
empymod Documentation
Release 1.5.2

Dieter Werthmüller

26 April 2018

Contents

1 More information 3

2 Citation 5

3 License information 7
3.1 Manual . 7
3.2 Roadmap . 14
3.3 Changelog . 15
3.4 Credits . 18
3.5 Code . 19

Bibliography 51

Python Module Index 53

i

ii

empymod Documentation, Release 1.5.2

Version: 1.5.2 ~ Date: 26 April 2018

The electromagnetic modeller empymod can model electric or magnetic responses due to a three-dimensional
electric or magnetic source in a layered-earth model with vertical transverse isotropic (VTI) resistivity, VTI electric
permittivity, and VTI magnetic permeability, from very low frequencies (DC) to very high frequencies (GPR).
The calculation is carried out in the wavenumber-frequency domain, and various Hankel- and Fourier-transform
methods are included to transform the responses into the space-frequency and space-time domains.

See https://empymod.github.io/#features for a complete list of features.

Contents 1

https://empymod.github.io/#features

empymod Documentation, Release 1.5.2

2 Contents

CHAPTER 1

More information

For more information regarding installation, usage, add-ons, contributing, roadmap, bug reports, and much more,
see

• Website: https://empymod.github.io,

• Documentation empymod: https://empymod.readthedocs.io,

• Documentation add-ons: https://empyscripts.readthedocs.io,

• Source Code: https://github.com/empymod,

• Examples: https://github.com/empymod/example-notebooks.

3

https://empymod.github.io
https://empymod.readthedocs.io
https://empyscripts.readthedocs.io
https://github.com/empymod
https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.5.2

4 Chapter 1. More information

CHAPTER 2

Citation

If you publish results for which you used empymod, please give credit by citing this article:

Werthmüller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media in Python:
empymod: Geophysics, 82(6), WB9–WB19; DOI: 10.1190/geo2016-0626.1.

All releases have a Zenodo-DOI, provided on the release-page. Also consider citing Hunziker et al. (2015) and
Key (2012), without which empymod would not exist.

5

http://doi.org/10.1190/geo2016-0626.1
https://github.com/empymod/empymod/releases
https://doi.org/10.1190/geo2013-0411.1
https://doi.org/10.1190/geo2011-0237.1

empymod Documentation, Release 1.5.2

6 Chapter 2. Citation

CHAPTER 3

License information

Copyright 2016-2018 Dieter Werthmüller

Licensed under the Apache License, Version 2.0. See the LICENSE- and NOTICE-files or the documentation for
more information.

3.1 Manual

3.1.1 Theory

The code is principally based on

• [Hunziker_et_al_2015] for the wavenumber-domain calculation (kernel),

• [Key_2012] for the DLF and QWE transforms,

• [Slob_et_al_2010] for the analytical half-space solutions, and

• [Hamilton_2000] for the FFTLog.

See these publications and all the others given in the references, if you are interested in the theory on which
empymod is based. Another good reference is [Ziolkowski_and_Slob], which will be published in late 2018. The
book derives in great detail the equations for layered-Earth CSEM modelling.

3.1.2 Installation

You can install empymod either via conda:

conda install -c prisae empymod

or via pip:

pip install empymod

Required are Python version 3.4 or higher and the modules NumPy and SciPy. The module numexpr is required
additionally (built with Intel’s VML) if you want to run parts of the kernel in parallel.

The modeller empymod comes with add-ons (empyscripts). These add-ons provide some very specific,
additional functionalities. To install them just follow the instructions for empymod, replacing empymod

7

empymod Documentation, Release 1.5.2

with empyscripts in the command. You can find more information regarding the add-ons directly on
github.com/empymod/empyscripts.

If you are new to Python I recommend using a Python distribution, which will ensure that all dependencies are
met, specifically properly compiled versions of NumPy and SciPy; I recommend using Anaconda. If you install
[Anaconda](https://www.anaconda.com/download). If you install Anaconda you can simply start the Anaconda
Navigator, add the channel prisae and both empymod and empyscripts will appear in the package list and
can be installed with a click.

Warning: Do not use scipy == 0.19.0. It has a memory leak in quad, see
github.com/scipy/scipy/pull/7216. So if you use QUAD (or potentially QWE) in any of your transforms you
might see your memory usage going through the roof.

The structure of empymod is:

• model.py: EM modelling routines.

• utils.py: Utilities for model such as checking input parameters.

• kernel.py: Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus ana-
lytical, frequency-domain full- and half-space solutions.

• transform.py: Methods to carry out the required Hankel transform from wavenumber to space domain and
Fourier transform from frequency to time domain.

• filters.py: Filters for the Digital Linear Filters method DLF (Hankel and Fourier transforms).

3.1.3 Usage/Examples

A good starting point is [Werthmuller_2017b], and more information can be found in [Werthmuller_2017]. There
are a lot of examples of its usage available, in the form of Jupyter notebooks. Have a look at the following
repositories:

• Example notebooks: https://github.com/empymod/example-notebooks,

• Geophysical Tutoriol TLE: https://github.com/empymod/article-tle2017, and

• Numerical examples of [Ziolkowski_and_Slob]: https://github.com/empymod/csem-ziolkowski-and-slob.

The main modelling routines is bipole, which can calculate the electromagnetic frequency- or time-domain
field due to arbitrary finite electric or magnetic bipole sources, measured by arbitrary finite electric or magnetic
bipole receivers. The model is defined by horizontal resistivity and anisotropy, horizontal and vertical electric
permittivities and horizontal and vertical magnetic permeabilities. By default, the electromagnetic response is
normalized to source and receiver of 1 m length, and source strength of 1 A.

A simple frequency-domain example, with most of the parameters left at the default value:

>>> import numpy as np
>>> from empymod import bipole
>>> # x-directed bipole source: x0, x1, y0, y1, z0, z1
>>> src = [-50, 50, 0, 0, 100, 100]
>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200, 0, 0]
>>> # layer boundaries
>>> depth = [0, 300, 1000, 1050]
>>> # layer resistivities
>>> res = [1e20, .3, 1, 50, 1]
>>> # Frequency
>>> freq = 1
>>> # Calculate electric field due to an electric source at 1 Hz.
>>> # [msrc = mrec = True (default)]
>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
:: empymod START ::

8 Chapter 3. License information

https://github.com/empymod/empyscripts
https://www.anaconda.com/download
https://www.anaconda.com/download
https://github.com/scipy/scipy/pull/7216
https://github.com/empymod/example-notebooks
https://github.com/empymod/article-tle2017
https://github.com/empymod/csem-ziolkowski-and-slob

empymod Documentation, Release 1.5.2

~
depth [m] : 0 300 1000 1050
res [Ohm.m] : 1E+20 0.3 1 50 1
aniso [-] : 1 1 1 1 1
epermH [-] : 1 1 1 1 1
epermV [-] : 1 1 1 1 1
mpermH [-] : 1 1 1 1 1
mpermV [-] : 1 1 1 1 1
frequency [Hz] : 1
Hankel : DLF (Fast Hankel Transform)

> Filter : Key 201 (2009)
> pts_per_dec : Defined by filter (lagged)

Hankel Opt. : None
Loop over : None (all vectorized)
Source(s) : 1 bipole(s)

> intpts : 1 (as dipole)
> length [m] : 100
> x_c [m] : 0
> y_c [m] : 0
> z_c [m] : 100
> azimuth [°] : 0
> dip [°] : 0

Receiver(s) : 10 dipole(s)
> x [m] : 500 - 5000 : 10 [min-max; #]

: 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
> y [m] : 0 - 0 : 10 [min-max; #]

: 0 0 0 0 0 0 0 0 0 0
> z [m] : 200
> azimuth [°] : 0
> dip [°] : 0

Required ab's : 11
~
:: empymod END; runtime = 0:00:00.005536 :: 1 kernel call(s)
~
>>> print(EMfield)
[1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j

-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

3.1.4 Contributing

New contributions, bug reports, or any kind of feedback is always welcomed! Have a look at the Roadmap-section
to get an idea of things that could be implemented. The best way for interaction is at https://github.com/empymod.
If you prefer to contact me outside of GitHub use the contact form on my personal website, https://werthmuller.org.

To install empymod from source, you can download the latest version from GitHub and either add the path to
empymod to your python-path variable, or install it in your python distribution via:

python setup.py install

Please make sure your code follows the pep8-guidelines by using, for instance, the python module flake8, and
also that your code is covered with appropriate tests. Just get in touch if you have any doubts.

The modeller comes with a test suite using pytest. If you want to run the tests, just install pytest and run it
within the empymod-top-directory.

> pip install pytest coveralls pytest-flake8
> # and then
> cd to/the/empymod/folder # Ensure you are in the right directory,

3.1. Manual 9

https://github.com/empymod
https://werthmuller.org

empymod Documentation, Release 1.5.2

> ls -d */ # your output should look the same.
docs/ empymod/ tests/
> # pytest will find the tests, which are located in the tests-folder.
> # simply run
> pytest --cov=empymod --flake8

It should run all tests successfully. Please let me know if not!

Note that installations of empymod via conda or pip do not have the test-suite included. To run the test-suite you
must download empymod from GitHub.

3.1.5 Transforms

Included Hankel transforms:

• Digital Linear Filters DLF

• Quadrature with Extrapolation QWE

• Adaptive quadrature QUAD

Included Fourier transforms:

• Digital Linear Filters DLF

• Quadrature with Extrapolation QWE

• Logarithmic Fast Fourier Transform FFTLog

• Fast Fourier Transform FFT

FFTLog

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT originally proposed by [Talman_1978].
The code used by empymod was published in Appendix B of [Hamilton_2000] and is publicly available at
casa.colorado.edu/~ajsh/FFTLog. From the FFTLog-website:

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a
periodic sequence of logarithmically spaced points.

FFTlog can be used for the Hankel as well as for the Fourier Transform, but currently empymod uses it only
for the Fourier transform. It uses a simplified version of the python implementation of FFTLog, pyfftlog
(github.com/prisae/pyfftlog).

[Haines_and_Jones_1988] proposed a logarithmic Fourier transform (abbreviated by the authors as LFT) for
electromagnetic geophysics, also based on [Talman_1978]. I do not know if Hamilton was aware of the work by
Haines and Jones. The two publications share as reference only the original paper by Talman, and both cite a pub-
lication of Anderson; Hamilton cites [Anderson_1982], and Haines and Jones cite [Anderson_1979]. Hamilton
probably never heard of Haines and Jones, as he works in astronomy, and Haines and Jones was published in the
Geophysical Journal.

Logarithmic FFTs are not widely used in electromagnetics, as far as I know, probably because of the ease, speed,
and generally sufficient precision of the digital filter methods with sine and cosine transforms ([Anderson_1975]).
However, comparisons show that FFTLog can be faster and more precise than digital filters, specifically for re-
sponses with source and receiver at the interface between air and subsurface. Credit to use FFTLog in electro-
magnetics goes to David Taylor who, in the mid-2000s, implemented FFTLog into the forward modellers of the
company Multi-Transient ElectroMagnetic (MTEM Ltd, later Petroleum Geo-Services PGS). The implementation
was driven by land responses, where FFTLog can be much more precise than the filter method for very early times.

10 Chapter 3. License information

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog

empymod Documentation, Release 1.5.2

Notes on Fourier Transform

The Fourier transform to obtain the space-time domain impulse response from the complex-valued space-
frequency response can be calculated by either a cosine transform with the real values, or a sine transform with
the imaginary part,

𝐸(𝑟, 𝑡)Impulse =
2

𝜋

∫︁ ∞

0

ℜ[𝐸(𝑟, 𝜔)] cos(𝜔𝑡) d𝜔 ,

= − 2

𝜋

∫︁ ∞

0

ℑ[𝐸(𝑟, 𝜔)] sin(𝜔𝑡) d𝜔 ,

see, e.g., [Anderson_1975] or [Key_2012]. Quadrature-with-extrapolation, FFTLog, and obviously the
sine/cosine-transform all make use of this split.

To obtain the step-on response the frequency-domain result is first divided by 𝑖𝜔, in the case of the step-off
response it is additionally multiplied by -1. The impulse-response is the time-derivative of the step-response,

𝐸(𝑟, 𝑡)Impulse =
𝜕 𝐸(𝑟, 𝑡)step

𝜕𝑡
.

Using 𝜕
𝜕𝑡 ⇔ 𝑖𝜔 and going the other way, from impulse to step, leads to the divison by 𝑖𝜔. (This only holds because

we define in accordance with the causality principle that 𝐸(𝑟, 𝑡 ≤ 0) = 0).

With the sine/cosine transform (ft='ffht'/'sin'/'cos') you can choose which one you want for the
impulse responses. For the switch-on response, however, the sine-transform is enforced, and equally the cosine
transform for the switch-off response. This is because these two do not need to now the field at time 0, 𝐸(𝑟, 𝑡 = 0).

The Quadrature-with-extrapolation and FFTLog are hard-coded to use the cosine transform for step-off responses,
and the sine transform for impulse and step-on responses. The FFT uses the full complex-valued response at the
moment.

For completeness sake, the step-on response is given by

𝐸(𝑟, 𝑡)Step-on = − 2

𝜋

∫︁ ∞

0

ℑ
[︂
𝐸(𝑟, 𝜔)

𝑖𝜔

]︂
sin(𝜔𝑡) d𝜔 ,

and the step-off by

𝐸(𝑟, 𝑡)Step-off = − 2

𝜋

∫︁ ∞

0

ℜ
[︂
𝐸(𝑟, 𝜔)

𝑖𝜔

]︂
cos(𝜔𝑡) d𝜔 .

3.1.6 Note on speed, memory, and accuracy

There is the usual trade-off between speed, memory, and accuracy. Very generally speaking we can say that the
DLF is faster than QWE, but QWE is much easier on memory usage. QWE allows you to control the accuracy. A
standard quadrature in the form of QUAD is also provided. QUAD is generally orders of magnitudes slower, and
more fragile depending on the input arguments. However, it can provide accurate results where DLF and QWE
fail.

There are two optimisation possibilities included via the opt-flag: parallelisation (opt='parallel') and
spline interpolation (opt='spline'). They are switched off by default. The optimization opt='parallel'
only affects speed and memory usage, whereas opt='spline' also affects precision!

I am sure empymod could be made much faster with cleverer coding style or with the likes of cython or numba.
Suggestions and contributions are welcomed!

Memory

By default empymod will try to carry out the calculation in one go, without looping. If your model has many
offsets and many frequencies this can be heavy on memory usage. Even more so if you are calculating time-
domain responses for many times. If you are running out of memory, you should use either loop='off' or
loop='freq' to loop over offsets or frequencies, respectively. Use verb=3 to see how many offsets and how
many frequencies are calculated internally.

3.1. Manual 11

empymod Documentation, Release 1.5.2

Depths, Rotation, and Bipole

Depths: Calculation of many source and receiver positions is fastest if they remain at the same depth, as they can
be calculated in one kernel-call. If depths do change, one has to loop over them. Note: Sources or receivers placed
on a layer interface are considered in the upper layer.

Rotation: Sources and receivers aligned along the principal axes x, y, and z can be calculated in one kernel call.
For arbitrary oriented di- or bipoles, 3 kernel calls are required. If source and receiver are arbitrary oriented, 9
(3x3) kernel calls are required.

Bipole: Bipoles increase the calculation time by the amount of integration points used. For a source and a receiver
bipole with each 5 integration points you need 25 (5x5) kernel calls. You can calculate it in 1 kernel call if you set
both integration points to 1, and therefore calculate the bipole as if they were dipoles at their centre.

Example: For 1 source and 10 receivers, all at the same depth, 1 kernel call is required. If all receivers are at
different depths, 10 kernel calls are required. If you make source and receivers bipoles with 5 integration points,
250 kernel calls are required. If you rotate the source arbitrary horizontally, 500 kernel calls are required. If you
rotate the receivers too, in the horizontal plane, 1‘000 kernel calls are required. If you rotate the receivers also
vertically, 1‘500 kernel calls are required. If you rotate the source vertically too, 2‘250 kernel calls are required.
So your calculation will take 2‘250 times longer! No matter how fast the kernel is, this will take a long time.
Therefore carefully plan how precise you want to define your source and receiver bipoles.

Table 3.1: Example as a table for comparison: 1 source, 10 receiver (one
or many frequencies).

source bipole receiver bipole
kernel calls intpts azimuth dip intpts azimuth dip diff. z
1 1 0/90 0/90 1 0/90 0/90 1
10 1 0/90 0/90 1 0/90 0/90 10
250 5 0/90 0/90 5 0/90 0/90 10
500 5 arb. 0/90 5 0/90 0/90 10
1000 5 arb. 0/90 5 arb. 0/90 10
1500 5 arb. 0/90 5 arb. arb. 10
2250 5 arb. arb. 5 arb. arb. 10

Parallelisation

If opt = 'parallel', a good dozen of the most time-consuming statements are calculated by using the
numexpr package (https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide). These statements are all in
the kernel-functions greenfct, reflections, and fields, and all involve Γ in one way or another, often
calculating square roots or exponentials. As Γ has dimensions (#frequencies, #offsets, #layers, #lambdas), it can
become fairly big.

The package numexpr has to be built with Intel’s VML, otherwise it won’t be used. You can check if it uses
VML with

>>> import numexpr
>>> numexpr.use_vml

The module numexpr uses by default all available cores up to a maximum of 8. You can change this behaviour
to a lower or a higher value with the following command (in the example it is changed to 4):

>>> import numexpr
>>> numexpr.set_num_threads(4)

This parallelisation will make empymod faster if you calculate a lot of offsets/frequencies at once, but slower for
few offsets/frequencies. Best practice is to check first which one is faster. (You can use the benchmark-notebook
in the empymod/example-notebooks-repository.)

12 Chapter 3. License information

https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide
https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.5.2

Spline interpolation

If opt = 'spline', the so-called lagged convolution or splined variant of the DLF (depending on htarg) or
the splined version of the QWE are applied. The spline option should be used with caution, as it is an interpolation
and therefore less precise than the non-spline version. However, it significantly speeds up QWE, and massively
speeds up DLF. (The numexpr-version of the spline option is slower than the pure spline one, and therefore it is
only possible to have either 'parallel' or 'spline' on.)

Setting opt = 'spline' is generally faster. Good speed-up is achieved for QWE by setting maxint as low
as possible. Also, the higher nquad is, the higher the speed-up will be. The variable pts_per_dec has also
some influence. For DLF, big improvements are achieved for long DLF-filters and for many offsets/frequencies
(thousands). Additionally, spline minimizes memory requirements a lot. Speed-up is greater if all source-receiver
angles are identical.

DLF: Default for pts_per_dec = None, which is the original lagged convolution, where the spacing is de-
fined by the filter-base, the transform is carried out first followed by spline-interpolation. You can set this parame-
ter to an integer, which defines the number of points to evaluate per decade. In this case the spline-interpolation is
carried out first, followed by the transformation. The original lagged convolution is generally the fastest for a very
good precision. However, by setting pts_per_dec appropriately one can achieve higher precision, normally at
the cost of speed.

Warning: Keep in mind that it uses interpolation, and is therefore not as accurate as the non-spline version.
Use with caution and always compare with the non-spline version if you can apply the spline-version to your
problem at hand!

Be aware that QUAD (Hankel transform) always use the splined version and always loop over offsets. The Fourier
transforms FFTlog, QWE, and FFT always use interpolation too, either in the frequency or in the time domain.
With the DLF Fourier transform (sine and cosine transforms) you can choose between no interpolation and inter-
polation (splined or lagged).

The splined versions of QWE check whether the ratio of any two adjacent intervals is above a certain threshold
(steep end of the wavenumber or frequency spectrum). If it is, it carries out QUAD for this interval instead of
QWE. The threshold is stored in diff_quad, which can be changed within the parameter htarg and ftarg.

For a graphical explanation of the differences between standard DLF, lagged convolution DLF, and splined DLF
for the Hankel and the Fourier transforms see the notebook 7a_DLF-Standard-Lagged-Splined in the
example-notebooks repository.

Looping

By default, you can calculate many offsets and many frequencies all in one go, vectorized (for the DLF), which
is the default. The loop parameter gives you the possibility to force looping over frequencies or offsets. This
parameter can have severe effects on both runtime and memory usage. Play around with this factor to find the
fastest version for your problem at hand. It ALWAYS loops over frequencies if ht = 'QWE'/'QUAD' or if opt
= 'spline'. All vectorized is very fast if there are few offsets or few frequencies. If there are many offsets
and many frequencies, looping over the smaller of the two will be faster. Choosing the right looping together with
opt = 'parallel' can have a huge influence.

Vertical components

It is advised to use xdirect = True (the default) if source and receiver are in the same layer to calculate

• the vertical electric field due to a vertical electric source,

• configurations that involve vertical magnetic components (source or receiver),

• all configurations when source and receiver depth are exactly the same.

The Hankel transforms methods are having sometimes difficulties transforming these functions.

3.1. Manual 13

https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.5.2

3.1.7 License

Copyright 2016-2018 Dieter Werthmüller

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

See the LICENSE- and NOTICE-files on GitHub for more information.

Note: This software was initially (till 01/2017) developed with funding from The Mexican National Council of
Science and Technology (Consejo Nacional de Ciencia y Tecnología, http://www.conacyt.gob.mx), carried out at
The Mexican Institute of Petroleum IMP (Instituto Mexicano del Petróleo, http://www.gob.mx/imp).

3.1.8 References

3.2 Roadmap

A collection of ideas of what could be added or improved in empymod. Please get in touch if you would like to
tackle one of these problems!

• Additional modelling routines

– tdem (TEM) [empymod#8]: Issues that have to be addressed: ramp waveform, windowing, loop
integration, zero-offset (coincident loop).

* in-loop

* coincident loop

* . . .

– Ramp waveform [empymod#7]

– Arbitrary waveform [empymod#7]

– Improve the GPR-routine [empymod#9]

– Load and save functions to easily store and load model information (resistivity model, acquisition
parameters, and modelling parameters) together with the modelling data (using pickle or shelve).

• Inversion [empyscripts#1]: Inversion routines, preferably a selection of different ones.

• Additional (semi-)analytical functions (where possible)

– Complete full-space (electric and magnetic source and receiver); space-time domain

– Extend diffusive half-space solution to magnetic sources and receivers; space-frequency and space-
time domains

– Complete half-space

• Fourier transform

– Include the method outlined by Mulder et al., 2008, Geophysics (piecewise-cubic Hermite interpola-
tion with a FFT).

– Change fft to use discrete sine/cosine transforms instead, as all other Fourier transforms

14 Chapter 3. License information

http://www.apache.org/licenses/LICENSE-2.0
http://www.conacyt.gob.mx
http://www.gob.mx/imp
https://github.com/empymod/empymod/issues/8
https://github.com/empymod/empymod/issues/7
https://github.com/empymod/empymod/issues/7
https://github.com/empymod/empymod/issues/9
https://github.com/empymod/empyscripts/issues/1

empymod Documentation, Release 1.5.2

– If previous step is successful, clean up the internal decisions (utils.check_time) when to use
sine/cosine transform (not consistent at the moment, some choice only exists with ffht impulse
responses, fqwe and fftlog use sine for impulse, and all three use sine for step-on responses and
cosine for step-off responses)

• Hankel transform

– Add the fht-module from FFTLog for the Hankel transform.

• Extend examples (example-notebooks)

– Add different methods (e.g. DC)

– Reproduce published results

• A cython, numba, or pure C/C++ implementation of the kernel and the transform modules. Maybe
not worth it, as it may improve speed, but decrease accessibility. Both at the same time would be nice. A
fast C/C++-version for calculations (inversions), and a Python-version to tinker with for interested folks.
(Probably combined with default parallelisation, removing the numexpr variant.)

• Abstraction of the code.

• GUI.

• Add a benchmark suite, e.g. http://asv.readthedocs.io, in addition to the testing suite.

• Add some clever checks, e.g. as in Key (2012): abort loops if the field is strongly attenuated (more relevant
if once an inversion is implemented).

• Move empymod from channel ‘prisae’ to ‘conda-forge’ (pros/cons?).

3.3 Changelog

3.3.1 v1.5.2 - 2018-04-25

• DLF improvements:

– Digital linear filter (DLF) method for the Fourier transform can now be carried out without spline,
providing 0 for pts_per_dec (or any integer smaller than 1).

– Combine kernel from fht and ffht into dlf, hence separate DLF from other calculations, as is
done with QWE (qwe for hqwe and fqwe).

– Bug fix regarding transform.get_spline_values; a DLF with pts_per_dec can now be
shorter then the corresponding filter.

3.3.2 v1.5.1 - 2018-02-24

• Documentation:

– Simplifications: avoid duplication as much as possible between the website (empymod.github.io), the
manual (empymod.readthedocs.io), and the README (github.com/empymod/empymod).

* Website has now only Features and Installation in full, all other information comes in the
form of links.

* README has only information in the form of links.

* Manual contains the README, and is basically the main document for all information.

– Improvements: Change some remaining md-syntax to rst-syntax.

– FHT -> DLF: replace FHT as much as possible, without breaking backwards compatibility.

3.3. Changelog 15

http://asv.readthedocs.io
https://empymod.github.io
https://empymod.readthedocs.io
https://github.com/empymod/empymod

empymod Documentation, Release 1.5.2

3.3.3 v1.5.0 - 2018-01-02

• Minimum parameter values can now be set and verified with utils.set_minimum and utils.
get_minimum.

• New Hankel filter wer_201_2018.

• opt=parallel has no effect if numexpr is not built against Intel’s VML. (Use import numexpr;
numexpr.use_vml to see if your numexpr uses VML.)

• Bug fixes

• Version of manuscript submission to geophysics for the DLF article.

3.3.4 v1.4.4 - 2017-09-18

[This was meant to be 1.4.3, but due to a setup/pypi/anaconda-issue I had to push it to 1.4.4; so there isn’t really a
version 1.4.3.]

• Add TE/TM split to diffusive ee-halfspace solution.

• Improve kernel.wavenumber for fullspaces.

• Extended fQWE and fftlog to be able to use the cosine-transform. Now the cosine-transform with the
real-part frequency response is used internally if a switch-off response (signal=-1) is required, rather
than calculating the switch-on response (with sine-transform and imaginary-part frequency response) and
subtracting it from the DC value.

• Bug fixes

• Version of CSEM book.

3.3.5 v1.4.2 - 2017-06-04

• Bugfix: Fixed squeeze in model.analytical with solution='dsplit'.

• Version of final submission of manuscript to Geophysics.

3.3.6 v1.4.1 - 2017-05-30

[This was meant to be 1.4.0, but due to a setup/pypi/anaconda-issue I had to push it to 1.4.1; so there isn’t really a
version 1.4.0.]

• New home: empymod.github.io as entry point, and the project page on github.com/empymod. All
empymod-repos moved to the new home.

– /prisae/empymod -> /empymod/empymod

– /prisae/empymod-notebooks -> /empymod/example-notebooks

– /prisae/empymod-geo2017 -> /empymod/article-geo2017

– /prisae/empymod-tle2017 -> /empymod/article-tle2017

• Modelling routines:

– New modelling routine model.analytical, which serves as a front-end to kernel.
fullspace or kernel.halfspace.

– Remove legacy routines model.time and model.frequency. They are covered perfectly by
model.dipole.

– Improved switch-off response (calculate and subtract from DC).

– xdirect adjustments:

16 Chapter 3. License information

https://empymod.github.io
https://github.com/empymod

empymod Documentation, Release 1.5.2

* isfullspace now respects xdirect.

* Removed xdirect from model.wavenumber (set to False).

• Kernel:

– Modify kernel.halfspace to use same input as other kernel functions.

– Include time-domain ee halfspace solution into kernel.halfspace; possible to obtain direct, re-
flected, and airwave separately, as well as only fullspace solution (all for the diffusive approximation).

3.3.7 v1.3.0 - 2017-03-30

• Add additional transforms and improve QWE:

– Conventional adaptive quadrature (QUADPACK) for the Hankel transform;

– Conventional FFT for the Fourier transform.

– Add diff_quad to htarg/ftarg of QWE, a switch parameter for QWE/QUAD.

– Change QWE/QUAD switch from comparing first interval to comparing all intervals.

– Add parameters for QUAD (a, b, limit) into htarg/ftarg for QWE.

• Allow htarg/ftarg as dict additionally to list/tuple.

• Improve model.gpr.

• Internal changes:

– Rename internally the sine/cosine filter from fft to ffht, because of the addition of the Fast Fourier
Transform fft.

• Clean-up repository

– Move notebooks to /prisae/empymod-notebooks

– Move publications/Geophysics2017 to /prisae/empymod-geo2017

– Move publications/TheLeadingEdge2017 to /prisae/empymod-tle2017

• Bug fixes and documentation improvements

3.3.8 v1.2.1 - 2017-03-11

• Change default filter from key_401_2009 to key_201_2009 (because of warning regarding 401 pt
filter in source code of DIPOLE1D.)

• Since 06/02/2017 installable via pip/conda.

• Bug fixes

3.3.9 v1.2.0 - 2017-02-02

• New routine:

– General modelling routine bipole (replaces srcbipole): Model the EM field for arbitrarily ori-
ented, finite length bipole sources and receivers.

• Added a test suite:

– Unit-tests of small functions.

– Framework-tests of the bigger functions:

* Comparing to status quo (regression tests),

3.3. Changelog 17

empymod Documentation, Release 1.5.2

* Comparing to known analytical solutions,

* Comparing different options to each other,

* Comparing to other 1D modellers (EMmod, DIPOLE1D, GREEN3D).

– Incorporated with Travis CI and Coveralls.

• Internal changes:

– Add kernel count (printed if verb > 1).

– numexpr is now only required if opt=='parallel'. If numexpr is not found, opt is reset to
None and a warning is printed.

– Cleaned-up wavenumber-domain routine.

– theta/phi -> azimuth/dip; easier to understand.

– Refined verbosity levels.

– Lots of changes in utils, with regards to the new routine bipole and with regards to verbosity.
Moved all warnings out from transform and model into utils.

• Bug fixes

3.3.10 v1.1.0 - 2016-12-22

• New routines:

– New srcbipole modelling routine: Model an arbitrarily oriented, finite length bipole source.

– Merge frequency and time into dipole. (frequency and time are still available.)

– dipole now supports multiple sources.

• Internal changes:

– Replace get_Gauss_Weights with scipy.special.p_roots

– jv(0,x), jv(1,x) -> j0(x), j1(x)

– Replace param_shape in utils with _check_var and _check_shape.

– Replace xco and yco by angle in kernel.fullspace

– Replace fftlog with python version.

– Additional sine-/cosine-filters: key_81_CosSin_2009, key_241_CosSin_2009, and
key_601_CosSin_2009.

• Bug fixes

3.3.11 v1.0.0 - 2016-11-29

• Initial release; state of manuscript submission to geophysics.

3.4 Credits

Thanks to

• Jürg Hunziker, Kerry Key, and Evert Slob for answering all my questions regarding their codes and
publications (Hunziker et al., 2015, Key, 2009, Key, 2012, Slob et al., 2010).

18 Chapter 3. License information

https://doi.org/10.1190/geo2013-0411.1
https://doi.org/10.1190/1.3058434
https://doi.org/10.1190/geo2011-0237.1
https://doi.org/10.2528/PIER10052807

empymod Documentation, Release 1.5.2

3.5 Code

3.5.1 model – Model EM-responses

EM-modelling routines. The implemented routines might not be the fastest solution to your specific problem. Use
these routines as template to create your own, problem-specific modelling routine!

Principal routines:

• bipole

• dipole

The main routine is bipole, which can model bipole source(s) and bipole receiver(s) of arbitrary direction, for
electric or magnetic sources and receivers, both in frequency and in time. A subset of bipole is dipole, which
models infinitesimal small dipoles along the principal axes x, y, and z.

Further routines are:

• analytical: Calculate analytical fullspace and halfspace solutions.

• wavenumber: Calculate the electromagnetic wavenumber-domain solution.

• gpr: Calculate the Ground-Penetrating Radar (GPR) response.

The wavenumber routine can be used if you are interested in the wavenumber-domain result, without Hankel
nor Fourier transform. It calls straight the kernel. The gpr-routine convolves the frequency-domain result with
a wavelet, and applies a gain to the time-domain result. This function is still experimental.

The modelling routines make use of the following two core routines:

• fem: Calculate wavenumber-domain electromagnetic field and carry out the Hankel transform
to the frequency domain.

• tem: Carry out the Fourier transform to time domain after fem.

empymod.model.bipole(src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, msrc=False, srcpts=1,
mrec=False, recpts=1, strength=0, xdirect=True, ht=’fht’, htarg=None,
ft=’sin’, ftarg=None, opt=None, loop=None, verb=2)

Return the electromagnetic field due to an electromagnetic source.

Calculate the electromagnetic frequency- or time-domain field due to arbitrary finite electric or magnetic
bipole sources, measured by arbitrary finite electric or magnetic bipole receivers. By default, the electro-
magnetic response is normalized to to source and receiver of 1 m length, and source strength of 1 A.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m):

• [x0, x1, y0, y1, z0, z1] (bipole of finite length)

• [x, y, z, azimuth, dip] (dipole, infinitesimal small)

Dimensions:

• The coordinates x, y, and z (dipole) or x0, x1, y0, y1, z0, and z1 (bipole) can
be single values or arrays.

• The variables x and y (dipole) or x0, x1, y0, and y1 (bipole) must have the
same dimensions.

• The variable z (dipole) or z0 and z1 (bipole) must either be single values or
having the same dimension as the other coordinates.

• The variables azimuth and dip must be single values. If they have different
angles, you have to use the bipole-method (with srcpts/recpts = 1, so it is
calculated as dipoles).

3.5. Code 19

empymod Documentation, Release 1.5.2

Angles (coordinate system is left-handed, positive z down (East-North-Depth):

• azimuth (°): horizontal deviation from x-axis, anti-clockwise.

• dip (°): vertical deviation from xy-plane downwards.

Sources or receivers placed on a layer interface are considered in the upper layer.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH
= #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH =
#mpermV = #res. Default is ones.

msrc, mrec : boolean, optional

If True, source/receiver (msrc/mrec) is magnetic, else electric. Default is False.

srcpts, recpts : int, optional

Number of integration points for bipole source/receiver, default is 1:

• srcpts/recpts < 3 : bipole, but calculated as dipole at centre

• srcpts/recpts >= 3 : bipole

strength : float, optional

Source strength (A):

• If 0, output is normalized to source and receiver of 1 m length, and source
strength of 1 A.

• If != 0, output is returned for given source and receiver length, and source
strength.

Default is 0.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated
analytically in the frequency domain, if False it is calculated in the wavenumber
domain. Defaults to True.

20 Chapter 3. License information

empymod Documentation, Release 1.5.2

ht : {‘fht’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Digital Linear Filter method (FHT, Fast Hankel
Transform), the Quadrature-With-Extrapolation (QWE), or a simple Quadrature
(QUAD) for the Hankel transform. Defaults to ‘fht’.

htarg : dict or list, optional

Depends on the value for ht:

• If ht = ‘fht’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter method
itself. (default: empymod.filters.key_201_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default: None)

• If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals (default:
40)

– pts_per_dec: points per decade; only relevant if opt=’spline’
(default: 80)

– diff_quad: criteria when to swap to QUAD (only relevant if
opt=’spline’) (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ht = ‘quad’: [atol, rtol, limit, lmin, lmax, pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-20)

– limit: An upper bound on the number of subintervals used in the adaptive
algorithm (default: 500)

– lmin: Minimum wavenumber (default 1e-6)

– lmax: Maximum wavenumber (default 0.1)

– pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if pro-
vided as list, you have to follow the order given above. A few examples, assuming
ht = qwe:

• Only changing rtol: {‘rtol’: 1e-4} or [1e-4] or 1e-4

• Changing rtol and nquad: {‘rtol’: 1e-4, ‘nquad’: 101} or [1e-4, ‘’, 101]

• Only changing diff_quad: {‘diffquad’: 10} or [‘’, ‘’, ‘’, ‘’, ‘’, 10]

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional

3.5. Code 21

empymod Documentation, Release 1.5.2

Only used if signal != None. Flag to choose either the Digital Linear Filter
method (Sine- or Cosine-Filter), the Quadrature-With-Extrapolation (QWE),
the FFTLog, or the FFT for the Fourier transform. Defaults to ‘sin’.

ftarg : dict or list, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the
filter method itself. (Default: empymod.filters.
key_201_CosSin_2012())

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. If <1, no interpolation is used at all.
(Default: None)

• If ft = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals
(default: 200)

– pts_per_dec: points per decade (default: 20)

– diff_quad: criteria when to swap to QUAD (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ft = ‘fftlog’: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

• If ft = ‘fft’: [dfreq, nfreq, ntot]:

– dfreq: Linear step-size of frequencies (default: 0.002)

– nfreq: Number of frequencies (default: 2048)

– ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is ideally a
power of 2, e.g. 2048 or 4096 (default: nfreq).

– pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always. The
default samples from 0.002 Hz - 4.096 Hz. If pts_per_dec is
set to an integer, calculated frequencies are logarithmically
spaced with the given number per decade, and then interpo-
lated to yield the required frequencies for the FFT.

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. See htarg for a
few examples.

opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

22 Chapter 3. License information

empymod Documentation, Release 1.5.2

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most ex-
pensive statements. Always check if it actually improves perfor-
mance for a specific problem. It can speed up the calculation for
big arrays, but will most likely be slower for small arrays. It will
use all available cores for these specific statements, which all contain
Gamma in one way or another, which has dimensions (#frequencies,
#offsets, #layers, #lambdas), therefore can grow pretty big. The mod-
ule numexpr uses by default all available cores up to a maximum of
8. You can change this behaviour to your desired number of threads
nthreads with numexpr.set_num_threads(nthreads).

• If ‘spline’, the lagged convolution or splined variant of the DLF/FHT
or the splined version of the QWE are used. Use with caution and
check with the non-spline version for a specific problem. (Can be
faster, slower, or plainly wrong, as it uses interpolation.) If spline
is set it will make use of the parameter pts_per_dec that can be de-
fined in htarg. If pts_per_dec is not set for DLF/FHT, then the lagged
version is used, else the splined. This option has no effect on QUAD.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’
also affects precision! Please read the note in the README documentation for
more information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies
(‘freq’) or over offsets (‘off’), default is None. It always loops over frequencies
if ht = 'qwe' or if opt = 'spline'. Calculating everything vectorized
is fast for few offsets OR for few frequencies. However, if you calculate many
frequencies for many offsets, it might be faster to loop over frequencies. Only
comparing the different versions will yield the answer for your specific problem
at hand!

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information

Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].

However, source and receiver are normalised (unless strength != 0). So for
instance in the electric case the source strength is 1 A and its length is 1 m. So
the electric field could also be written as [V/(A.m2)].

In the magnetic case the source strength is given by 𝑖𝜔𝜇0𝐴𝐼𝑒, where A is the
loop area (m2), and 𝐼𝑒 the electric source strength. For the normalized mag-
netic source 𝐴 = 1𝑚2 and 𝐼𝑒 = 1𝐴𝑚𝑝𝑒𝑟𝑒. A magnetic source is therefore
frequency dependent.

3.5. Code 23

empymod Documentation, Release 1.5.2

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are re-
moved.

See also:

fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod import bipole
>>> # x-directed bipole source: x0, x1, y0, y1, z0, z1
>>> src = [-50, 50, 0, 0, 100, 100]
>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200, 0, 0]
>>> # layer boundaries
>>> depth = [0, 300, 1000, 1050]
>>> # layer resistivities
>>> res = [1e20, .3, 1, 50, 1]
>>> # Frequency
>>> freq = 1
>>> # Calculate electric field due to an electric source at 1 Hz.
>>> # [msrc = mrec = True (default)]
>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
:: empymod START ::
~

depth [m] : 0 300 1000 1050
res [Ohm.m] : 1E+20 0.3 1 50 1
aniso [-] : 1 1 1 1 1
epermH [-] : 1 1 1 1 1
epermV [-] : 1 1 1 1 1
mpermH [-] : 1 1 1 1 1
mpermV [-] : 1 1 1 1 1
frequency [Hz] : 1
Hankel : DLF (Fast Hankel Transform)

> Filter : Key 201 (2009)
> pts_per_dec : Defined by filter (lagged)

Hankel Opt. : None
Loop over : None (all vectorized)
Source(s) : 1 bipole(s)

> intpts : 1 (as dipole)
> length [m] : 100
> x_c [m] : 0
> y_c [m] : 0
> z_c [m] : 100
> azimuth [°] : 0
> dip [°] : 0

Receiver(s) : 10 dipole(s)
> x [m] : 500 - 5000 : 10 [min-max; #]

: 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
> y [m] : 0 - 0 : 10 [min-max; #]

: 0 0 0 0 0 0 0 0 0 0
> z [m] : 200
> azimuth [°] : 0
> dip [°] : 0

Required ab's : 11
~
:: empymod END; runtime = 0:00:00.005536 :: 1 kernel call(s)
~
>>> print(EMfield)
[1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j

24 Chapter 3. License information

empymod Documentation, Release 1.5.2

-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

empymod.model.dipole(src, rec, depth, res, freqtime, signal=None, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None, xdi-
rect=True, ht=’fht’, htarg=None, ft=’sin’, ftarg=None, opt=None,
loop=None, verb=2)

Return the electromagnetic field due to a dipole source.

Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or mag-
netic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and
receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well
as all receivers are at the same depth.

Use the functions bipole to calculate dipoles with arbitrary angles or bipoles of finite length and arbitrary
angle.

The function dipole could be replaced by bipole (all there is to do is translate ab into msrc, mrec,
azimuth’s and dip’s). However, dipole is kept separately to serve as an example of a simple modelling
routine that can serve as a template.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

Sources or receivers placed on a layer interface are considered in the upper
layer.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric
receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic
receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

3.5. Code 25

empymod Documentation, Release 1.5.2

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to
ones.

epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res. Default is ones.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is cal-
culated analytically in the frequency domain, if False it is calculated in the
wavenumber domain. Defaults to True.

ht : {‘fht’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Digital Linear Filter method (FHT, Fast Han-
kel Transform), the Quadrature-With-Extrapolation (QWE), or a simple
Quadrature (QUAD) for the Hankel transform. Defaults to ‘fht’.

htarg : dict or list, optional

Depends on the value for ht:

• If ht = ‘fht’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or
the filter method itself. (default: empymod.filters.
key_201_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default:
None)

• If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals
(default: 40)

– pts_per_dec: points per decade; only relevant if opt=’spline’
(default: 80)

– diff_quad: criteria when to swap to QUAD (only relevant
if opt=’spline’) (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ht = ‘quad’: [atol, rtol, limit, lmin, lmax, pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

26 Chapter 3. License information

empymod Documentation, Release 1.5.2

– atol: absolute tolerance (default: 1e-20)

– limit: An upper bound on the number of subintervals used in
the adaptive algorithm (default: 500)

– lmin: Minimum wavenumber (default 1e-6)

– lmax: Maximum wavenumber (default 0.1)

– pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. A few examples,
assuming ht = qwe:

• Only changing rtol: {‘rtol’: 1e-4} or [1e-4] or 1e-4

• Changing rtol and nquad: {‘rtol’: 1e-4, ‘nquad’: 101} or [1e-4, ‘’,
101]

• Only changing diff_quad: {‘diffquad’: 10} or [‘’, ‘’, ‘’, ‘’, ‘’, 10]

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional

Only used if signal != None. Flag to choose either the Digital Linear
Filter method (Sine- or Cosine-Filter), the Quadrature-With-Extrapolation
(QWE), the FFTLog, or the FFT for the Fourier transform. Defaults to ‘sin’.

ftarg : dict or list, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or
the filter method itself. (Default: empymod.filters.
key_201_CosSin_2012())

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. If <1, no interpolation is used at all.
(Default: None)

• If ft = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals
(default: 200)

– pts_per_dec: points per decade (default: 20)

– diff_quad: criteria when to swap to QUAD (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ft = ‘fftlog’: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

• If ft = ‘fft’: [dfreq, nfreq, ntot]:

– dfreq: Linear step-size of frequencies (default: 0.002)

3.5. Code 27

empymod Documentation, Release 1.5.2

– nfreq: Number of frequencies (default: 2048)

– ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is ideally a
power of 2, e.g. 2048 or 4096 (default: nfreq).

– pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always.
The default samples from 0.002 Hz - 4.096 Hz. If
pts_per_dec is set to an integer, calculated frequencies are
logarithmically spaced with the given number per decade,
and then interpolated to yield the required frequencies for
the FFT.

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. See htarg for a
few examples.

opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most
expensive statements. Always check if it actually improves per-
formance for a specific problem. It can speed up the calculation
for big arrays, but will most likely be slower for small arrays. It
will use all available cores for these specific statements, which
all contain Gamma in one way or another, which has dimensions
(#frequencies, #offsets, #layers, #lambdas), therefore can grow
pretty big. The module numexpr uses by default all available
cores up to a maximum of 8. You can change this behaviour
to your desired number of threads nthreads with numexpr.
set_num_threads(nthreads).

• If ‘spline’, the lagged convolution or splined variant of the
DLF/FHT or the splined version of the QWE are used. Use with
caution and check with the non-spline version for a specific prob-
lem. (Can be faster, slower, or plainly wrong, as it uses interpola-
tion.) If spline is set it will make use of the parameter pts_per_dec
that can be defined in htarg. If pts_per_dec is not set for DLF/FHT,
then the lagged version is used, else the splined. This option has
no effect on QUAD.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’
also affects precision! Please read the note in the README documentation
for more information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies
(‘freq’) or over offsets (‘off’), default is None. It always loops over fre-
quencies if ht = 'qwe' or if opt = 'spline'. Calculating every-
thing vectorized is fast for few offsets OR for few frequencies. However, if
you calculate many frequencies for many offsets, it might be faster to loop
over frequencies. Only comparing the different versions will yield the an-
swer for your specific problem at hand!

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

28 Chapter 3. License information

empymod Documentation, Release 1.5.2

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information
Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided
by seconds [1/s].

However, source and receiver are normalised. So for instance in the electric
case the source strength is 1 A and its length is 1 m. So the electric field
could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are
removed.

See also:

bipole Electromagnetic field due to an electromagnetic source.
fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod import dipole
>>> src = [0, 0, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = dipole(src, rec, depth, res, freqtime=1, verb=0)
>>> print(EMfield)
[1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j
-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

empymod.model.analytical(src, rec, res, freqtime, solution=’fs’, signal=None, ab=11,
aniso=None, epermH=None, epermV=None, mpermH=None,
mpermV=None, verb=2)

Return the analytical full- or half-space solution.

Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or mag-
netic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and
receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well
as all receivers are at the same depth.

In the case of a halfspace the air-interface is located at z = 0 m.

You can call the functions fullspace and halfspace in kernel.py directly. This interface is just to
provide a consistent interface with the same input parameters as for instance for dipole.

This function yields the same result if solution='fs' as dipole, if the model is a fullspace.
Included are:

• Full fullspace solution (solution='fs') for ee-, me-, em-, mm-fields, only frequency do-
main, [Hunziker_et_al_2015].

3.5. Code 29

empymod Documentation, Release 1.5.2

• Diffusive fullspace solution (solution='dfs') for ee-fields, [Slob_et_al_2010].
• Diffusive halfspace solution (solution='dhs') for ee-fields, [Slob_et_al_2010].
• Diffusive direct- and reflected field and airwave (solution='dsplit') for ee-fields,

[Slob_et_al_2010].
• Diffusive direct- and reflected field and airwave (solution='dtetm') for ee-fields, split

into TE and TM mode [Slob_et_al_2010].

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

res : float

Horizontal resistivity rho_h (Ohm.m).

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).

solution : str, optional

Defines which solution is returned:

• ‘fs’ : Full fullspace solution (ee-, me-, em-, mm-fields); f-domain.

• ‘dfs’ : Diffusive fullspace solution (ee-fields only).

• ‘dhs’ : Diffusive halfspace solution (ee-fields only).

• ‘dsplit’ [Diffusive direct- and reflected field and airwave] (ee-
fields only).

• ‘dtetm’ [as dsplit, but direct fielt TE, TM; reflected field TE,
TM,] and airwave (ee-fields only).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric
receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic
receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

aniso : float, optional

Anisotropy lambda = sqrt(rho_v/rho_h) (-); defaults to one.

epermH, epermV : float, optional

Relative horizontal/vertical electric permittivity epsilon_h/epsilon_v (-); de-
fault is one. Ignored for the diffusive solution.

30 Chapter 3. License information

empymod Documentation, Release 1.5.2

mpermH, mpermV : float, optional

Relative horizontal/vertical magnetic permeability mu_h/mu_v (-); default
is one. Ignored for the diffusive solution.

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information
Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided
by seconds [1/s].

However, source and receiver are normalised. So for instance in the electric
case the source strength is 1 A and its length is 1 m. So the electric field
could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are
removed.

If solution='dsplit', three ndarrays are returned: direct, reflect, air.

If solution='dtetm', five ndarrays are returned: direct_TE, di-
rect_TM, reflect_TE, reflect_TM, air.

Examples

>>> import numpy as np
>>> from empymod import analytical
>>> src = [0, 0, 0]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> res = 50
>>> EMfield = analytical(src, rec, res, freqtime=1, verb=0)
>>> print(EMfield)
[4.03091405e-08 -9.69163818e-10j 6.97630362e-09 -4.88342150e-10j

2.15205979e-09 -2.97489809e-10j 8.90394459e-10 -1.99313433e-10j
4.32915802e-10 -1.40741644e-10j 2.31674165e-10 -1.02579391e-10j
1.31469130e-10 -7.62770461e-11j 7.72342470e-11 -5.74534125e-11j
4.61480481e-11 -4.36275540e-11j 2.76174038e-11 -3.32860932e-11j]

empymod.model.gpr(src, rec, depth, res, freqtime, cf, gain=None, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None, xdirect=True,
ht=’quad’, htarg=None, ft=’fft’, ftarg=None, opt=None, loop=None, verb=2)

Return the Ground-Penetrating Radar signal.

THIS FUNCTION IS EXPERIMENTAL, USE WITH CAUTION.

It is rather an example how you can calculate GPR responses; however, DO NOT RELY ON IT! It works
only well with QUAD or QWE (quad, qwe) for the Hankel transform, and with FFT (fft) for the Fourier
transform.

3.5. Code 31

empymod Documentation, Release 1.5.2

It calls internally dipole for the frequency-domain calculation. It subsequently convolves the response
with a Ricker wavelet with central frequency cf. If signal!=None, it carries out the Fourier transform and
applies a gain to the response.

For input parameters see the function dipole, except for:
Parameters cf : float

Centre frequency of GPR-signal, in Hz. Sensible values are between 10
MHz and 3000 MHz.

gain : float

Power of gain function. If None, no gain is applied. Only used if sig-
nal!=None.

Returns EM : ndarray

GPR response

empymod.model.wavenumber(src, rec, depth, res, freq, wavenumber, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None,
verb=2)

Return the electromagnetic wavenumber-domain field.

Calculate the electromagnetic wavenumber-domain field due to infinitesimal small electric or magnetic
dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and re-
ceivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well as
all receivers are at the same depth.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension. The x- and y-coordinates only matter for the angle-dependent
factor.

Sources or receivers placed on a layer interface are considered in the upper
layer.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freq : array_like

Frequencies f (Hz), used to calculate etaH/V and zetaH/V.

wavenumber : array

Wavenumbers lambda (1/m)

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric
receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic
receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

aniso : array_like, optional

32 Chapter 3. License information

empymod Documentation, Release 1.5.2

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to
ones.

epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res. Default is ones.

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information
Returns PJ0, PJ1 : array

Wavenumber-domain EM responses:

• PJ0: Wavenumber-domain solution for the kernel with a Bessel
function of the first kind of order zero.

• PJ1: Wavenumber-domain solution for the kernel with a Bessel
function of the first kind of order one.

See also:

dipole Electromagnetic field due to an electromagnetic source (dipoles).
bipole Electromagnetic field due to an electromagnetic source (bipoles).
fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod.model import wavenumber
>>> src = [0, 0, 100]
>>> rec = [5000, 0, 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> freq = 1
>>> wavenrs = np.logspace(-3.7, -3.6, 10)
>>> PJ0, PJ1 = wavenumber(src, rec, depth, res, freq, wavenrs, verb=0)
>>> print(PJ0)
[-1.02638329e-08 +4.91531529e-09j -1.05289724e-08 +5.04222413e-09j
-1.08009148e-08 +5.17238608e-09j -1.10798310e-08 +5.30588284e-09j
-1.13658957e-08 +5.44279805e-09j -1.16592877e-08 +5.58321732e-09j
-1.19601897e-08 +5.72722830e-09j -1.22687889e-08 +5.87492067e-09j
-1.25852765e-08 +6.02638626e-09j -1.29098481e-08 +6.18171904e-09j]

>>> print(PJ1)
[1.79483705e-10 -6.59235332e-10j 1.88672497e-10 -6.93749344e-10j

1.98325814e-10 -7.30068377e-10j 2.08466693e-10 -7.68286748e-10j
2.19119282e-10 -8.08503709e-10j 2.30308887e-10 -8.50823701e-10j
2.42062030e-10 -8.95356636e-10j 2.54406501e-10 -9.42218177e-10j
2.67371420e-10 -9.91530051e-10j 2.80987292e-10 -1.04342036e-09j]

3.5. Code 33

empymod Documentation, Release 1.5.2

empymod.model.fem(ab, off, angle, zsrc, zrec, lsrc, lrec, depth, freq, etaH, etaV, zetaH, zetaV, xdirect,
isfullspace, ht, htarg, use_spline, use_ne_eval, msrc, mrec, loop_freq, loop_off,
conv=True)

Return the electromagnetic frequency-domain response.

This function is called from one of the above modelling routines. No input-check is carried out here. See
the main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful
for inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

empymod.model.tem(fEM, off, freq, time, signal, ft, ftarg, conv=True)
Return the time-domain response of the frequency-domain response fEM.

This function is called from one of the above modelling routines. No input-check is carried out here. See
the main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful
for inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

3.5.2 kernel – Kernel calculation

Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus analytical full- and half-
space solutions.

The functions wavenumber, angle_factor, fullspace, greenfct, reflections, and fields are
based on source files (specified in each function) from the source code distributed with [Hunziker_et_al_2015],
which can be found at software.seg.org/2015/0001. These functions are (c) 2015 by Hunziker et al. and the
Society of Exploration Geophysicists, http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the
root directory for more information regarding the involved licenses.

empymod.kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab,
xdirect, msrc, mrec, use_ne_eval)

Calculate wavenumber domain solution.

Return the wavenumber domain solutions PJ0, PJ1, and PJ0b, which have to be transformed with a Han-
kel transform to the frequency domain. PJ0/PJ0b and PJ1 have to be transformed with Bessel functions
of order 0 (𝐽0) and 1 (𝐽1), respectively.

This function corresponds loosely to equations 105–107, 111–116, 119–121, and 123–128 in
[Hunziker_et_al_2015], and equally loosely to the file kxwmod.c.

[Hunziker_et_al_2015] uses Bessel functions of orders 0, 1, and 2 (𝐽0, 𝐽1, 𝐽2). The implementations of
the Fast Hankel Transform and the Quadrature-with-Extrapolation in transform are set-up with Bessel
functions of order 0 and 1 only. This is achieved by applying the recurrence formula

𝐽2(𝑘𝑟) =
2

𝑘𝑟
𝐽1(𝑘𝑟) − 𝐽0(𝑘𝑟) .

Note: PJ0 and PJ0b could theoretically be added here into one, and then be transformed in one go.
However, PJ0b has to be multiplied by factAng later. This has to be done after the Hankel transform for
methods which make use of spline interpolation, in order to work for offsets that are not in line with each
other.

This function is called from one of the Hankel functions in transform. Consult the modelling routines
in model for a description of the input and output parameters.

If you are solely interested in the wavenumber-domain solution you can call this function directly. However,
you have to make sure all input arguments are correct, as no checks are carried out here.

empymod.kernel.angle_factor(angle, ab, msrc, mrec)
Return the angle-dependent factor.

34 Chapter 3. License information

http://software.seg.org/2015/0001
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.5.2

The whole calculation in the wavenumber domain is only a function of the distance between the source and
the receiver, it is independent of the angel. The angle-dependency is this factor, which can be applied to the
corresponding parts in the wavenumber or in the frequency domain.

The angle_factor corresponds to the sine and cosine-functions in Eqs 105-107, 111-116, 119-121,
123-128.

This function is called from one of the Hankel functions in transform. Consult the modelling routines
in model for a description of the input and output parameters.

empymod.kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH, zetaV, ab, msrc, mrec)
Analytical full-space solutions in the frequency domain.

�̂�𝑒𝑒
𝛼𝛽 , �̂�

𝑒𝑒
3𝛼, �̂�

𝑒𝑒
33, �̂�

𝑒𝑚
𝛼𝛽 , �̂�

𝑒𝑚
𝛼3

This function corresponds to equations 45–50 in [Hunziker_et_al_2015], and loosely to the correspond-
ing files Gin11.F90, Gin12.F90, Gin13.F90, Gin22.F90, Gin23.F90, Gin31.F90, Gin32.
F90, Gin33.F90, Gin41.F90, Gin42.F90, Gin43.F90, Gin51.F90, Gin52.F90, Gin53.
F90, Gin61.F90, and Gin62.F90.

This function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

empymod.kernel.greenfct(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,
msrc, mrec, use_ne_eval)

Calculate Green’s function for TM and TE.

𝑔𝑡𝑚ℎℎ , 𝑔
𝑡𝑚
ℎ𝑧 , 𝑔

𝑡𝑚
𝑧ℎ , 𝑔

𝑡𝑚
𝑧𝑧 , 𝑔

𝑡𝑒
ℎℎ, 𝑔

𝑡𝑒
𝑧𝑧

This function corresponds to equations 108–110, 117/118, 122; 89–94, A18–A23, B13–B15; 97–102
A26–A31, and B16–B18 in [Hunziker_et_al_2015], and loosely to the corresponding files Gamma.F90,
Wprop.F90, Ptotalx.F90, Ptotalxm.F90, Ptotaly.F90, Ptotalym.F90, Ptotalz.F90,
and Ptotalzm.F90.

The Green’s functions are multiplied according to Eqs 105-107, 111-116, 119-121, 123-128; with the factors
inside the integrals.

This function is called from the function kernel.wavenumber.

empymod.kernel.reflections(depth, e_zH, Gam, lrec, lsrc, use_ne_eval)
Calculate Rp, Rm.

𝑅±
𝑛 , �̄�

±
𝑛

This function corresponds to equations 64/65 and A-11/A-12 in [Hunziker_et_al_2015], and loosely to the
corresponding files Rmin.F90 and Rplus.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.fields(depth, Rp, Rm, Gam, lrec, lsrc, zsrc, ab, TM, use_ne_eval)
Calculate Pu+, Pu-, Pd+, Pd-.

𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 , 𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 ;𝑃𝑢±
𝑠−1, 𝑃

𝑢±
𝑛 , 𝑃𝑢±

𝑠−1, 𝑃
𝑢±
𝑛 ;𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛 , 𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛

This function corresponds to equations 81/82, 95/96, 103/104, A-8/A-9, A-24/A-25, and A-32/A-33 in
[Hunziker_et_al_2015], and loosely to the corresponding files Pdownmin.F90, Pdownplus.F90,
Pupmin.F90, and Pdownmin.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.halfspace(off, angle, zsrc, zrec, etaH, etaV, freqtime, ab, signal, solution=’dhs’)
Return frequency- or time-space domain VTI half-space solution.

Calculates the frequency- or time-space domain electromagnetic response for a half-space below air using
the diffusive approximation, as given in [Slob_et_al_2010], where the electric source is located at [0, 0,
zsrc], and the electric receiver at [xco, yco, zrec].

3.5. Code 35

empymod Documentation, Release 1.5.2

It can also be used to calculate the fullspace solution or the separate fields: direct field, reflected field, and
airwave; always using the diffusive approximation. See solution-parameter.

This function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and solution parameters.

3.5.3 transform – Hankel and Fourier Transforms

Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform
from frequency to time domain.

The functions for the QWE and DLF Hankel and Fourier transforms are based on source files (specified in each
function) from the source code distributed with [Key_2012], which can be found at software.seg.org/2012/0003.
These functions are (c) 2012 by Kerry Key and the Society of Exploration Geophysicists, http://software.seg.org/
disclaimer.txt. Please read the NOTICE-file in the root directory for more information regarding the involved
licenses.

empymod.transform.fht(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
fhtarg, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using the Digital Linear Filter method.

The Digital Linear Filter method was introduced to geophysics by [Ghosh_1971], and made popular and
wide-spread by [Anderson_1975], [Anderson_1979], [Anderson_1982]. The DLF is sometimes referred to
as the Fast Hankel Transform FHT, from which this routine has its name.

This implementation of the DLF follows [Key_2012], equation 6. Without going into the mathematical
details (which can be found in any of the above papers) and following [Key_2012], the DLF method rewrites
the Hankel transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as

𝐹 (𝑟) =

𝑛∑︁
𝑖=1

𝑓(𝑏𝑖/𝑟)ℎ𝑖/𝑟 ,

where ℎ is the digital filter.The Filter abscissae b is given by

𝑏𝑖 = 𝜆𝑖𝑟 = 𝑒𝑎𝑖, 𝑖 = −𝑙,−𝑙 + 1, · · · , 𝑙 ,

with 𝑙 = (𝑛− 1)/2, and 𝑎 is the spacing coefficient.

This function is loosely based on get_CSEM1D_FD_FHT.m from the source code distributed with
[Key_2012].

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

kcount : int

Kernel count. For DLF, this is 1.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.hqwe(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdi-
rect, qweargs, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using Quadrature-With-Extrapolation.

Quadrature-With-Extrapolation was introduced to geophysics by [Key_2012]. It is one of many so-called
ISE methods to solve Hankel Transforms, where ISE stands for Integration, Summation, and Extrapolation.

36 Chapter 3. License information

http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.5.2

Following [Key_2012], but without going into the mathematical details here, the QWE method rewrites the
Hankel transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as a quadrature sum which form is similar to the DLF (equation 15),

𝐹𝑖 ≈
𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑤𝑗𝑔(𝑥𝑗) =

𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑔(𝑥𝑗) ,

but with various bells and whistles applied (using the so-called Shanks transformation in the form
of a routine called 𝜖-algorithm ([Shanks_1955], [Wynn_1956]; implemented with algorithms from
[Trefethen_2000] and [Weniger_1989]).

This function is based on get_CSEM1D_FD_QWE.m, qwe.m, and getBesselWeights.m from the
source code distributed with [Key_2012].

In the spline-version, hqwe checks how steep the decay of the wavenumber-domain result is, and calls
QUAD for the very steep interval, for which QWE is not suited.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

kcount : int

Kernel count.

conv : bool

If true, QWE/QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform.hquad(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV,
xdirect, quadargs, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using the QUADPACK library.

This routine uses the scipy.integrate.quad module, which in turn makes use of the Fortran library
QUADPACK (qagse).

It is massively (orders of magnitudes) slower than either fht or hqwe, and is mainly here for completeness
and comparison purposes. It always uses interpolation in the wavenumber domain, hence it generally will
not be as precise as the other methods. However, it might work in some areas where the others fail.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

kcount : int

Kernel count. For HQUAD, this is 1.

conv : bool

If true, QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform.ffht(fEM, time, freq, ftarg)
Fourier Transform using the Digital Linear Filter method.

It follows the Filter methodology [Anderson_1975], using Cosine- and Sine-filters; see fht for more infor-
mation.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

This function is based on get_CSEM1D_TD_FHT.m from the source code distributed with [Key_2012].

3.5. Code 37

empymod Documentation, Release 1.5.2

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.fqwe(fEM, time, freq, qweargs)
Fourier Transform using Quadrature-With-Extrapolation.

It follows the QWE methodology [Key_2012] for the Hankel transform, see hqwe for more information.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

This function is based on get_CSEM1D_TD_QWE.m from the source code distributed with [Key_2012].

fqwe checks how steep the decay of the frequency-domain result is, and calls QUAD for the very steep
interval, for which QWE is not suited.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

If true, QWE/QUAD converged. If not, <ftarg> might have to be adjusted.

empymod.transform.fftlog(fEM, time, freq, ftarg)
Fourier Transform using FFTLog.

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT. FFTLog was presented in Appendix
B of [Hamilton_2000] and published at <http://casa.colorado.edu/~ajsh/FFTLog>.

This function uses a simplified version of pyfftlog, which is a python-version of FFTLog. For more
details regarding pyfftlog see <https://github.com/prisae/pyfftlog>.

Not the full flexibility of FFTLog is available here: Only the logarithmic FFT (fftl in FFTLog), not the
Hankel transform (fht in FFTLog). Furthermore, the following parameters are fixed:

• kr = 1 (initial value)
• kropt = 1 (silently adjusts kr)
• dir = 1 (forward)

Furthermore, q is restricted to -1 <= q <= 1.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.fft(fEM, time, freq, ftarg)
Fourier Transform using the Fast Fourier Transform.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.dlf(signal, points, out_pts, filt, lagged, splined, kind=None, factAng=None,
ab=None)

Digital Linear Filter method.

38 Chapter 3. License information

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog

empymod Documentation, Release 1.5.2

This is the kernel of the DLF method, used for the Hankel (fht) and the Fourier (ffht) Transforms. See
fht for an extensive description.

For the Hankel transform, signal contains 3 complex wavenumber-domain signals: (PJ0, PJ1, PJ0b), as re-
turned from kernel.wavenumber. The Hankel DLF requires two additional parameters: factAng, as returned
from kernel.angle_factor, and ab. The PJ0-kernel is the part of the wavenumber-domain calculation which
contains a zeroth-order Bessel function and does NOT depend on the angle between source and receiver,
only on offset. PJ0b and PJ1 are the parts of the wavenumber-domain calculation which contain a zeroth-
and first-order Bessel function, respectively, and DO depend on the angle between source and receiver.

For the Fourier transform, signal is a complex frequency-domain signal. The Fourier DLF requires one
additional parameter, kind, which will be ‘cos’ or ‘sin’.

empymod.transform.qwe(rtol, atol, maxint, inp, intervals, lambd=None, off=None, factAng=None)
Quadrature-With-Extrapolation.

This is the kernel of the QWE method, used for the Hankel (hqwe) and the Fourier (fqwe) Transforms.
See hqwe for an extensive description.

This function is based on qwe.m from the source code distributed with [Key_2012].

empymod.transform.get_spline_values(filt, inp, nr_per_dec=None)
Return required calculation points.

empymod.transform.fhti(rmin, rmax, n, q, mu)
Return parameters required for FFTLog.

3.5.4 filters – Digital Linear Filters

Filters for the Digital Linear Filter (DLF) method for the Hankel [Ghosh_1971]) and the Fourier
([Anderson_1975]) transforms.

To calculate the dlf.factor I used

np.around(np.average(dlf.base[1:]/dlf.base[:-1]), 15)

The filters kong_61_2007 and kong_241_2007 from [Kong_2007], and key_101_2009,
key_201_2009, key_401_2009, key_81_CosSin_2009, key_241_CosSin_2009, and
key_601_CosSin_2009 from [Key_2009] are taken from DIPOLE1D, [Key_2009], which can be down-
loaded at http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM (1DCSEM). DIPOLE1D is distributed under
the license GNU GPL version 3 or later. Kerry Key gave his written permission to re-distribute the filters under
the Apache License, Version 2.0 (email from Kerry Key to Dieter Werthmüller, 21 November 2016).

The filters anderson_801_1982 from [Anderson_1982] and key_51_2012, key_101_2012,
key_201_2012, key_101_CosSin_2012, and key_201_CosSin_2012, all from [Key_2012], are taken
from the software distributed with [Key_2012] and available at http://software.seg.org/2012/0003 (SEG-2012-
003). These filters are distributed under the SEG license.

The filter wer_201_2018 was designed with the add-on fdesign, see https://github.com/empymod/
article-fdesign.

class empymod.filters.DigitalFilter(name)
Simple Class for Digital Linear Filters.

empymod.filters.anderson_801_1982()
Anderson 801 pt Hankel filter, as published in [Anderson_1982].

Taken from file wa801Hankel.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_101_2009()
Key 101 pt Hankel filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

3.5. Code 39

http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://software.seg.org/2012/0003
http://software.seg.org/2012/0003
http://software.seg.org/2012/0003
https://github.com/empymod/article-fdesign
https://github.com/empymod/article-fdesign
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM

empymod Documentation, Release 1.5.2

License: Apache License, Version 2.0,.

empymod.filters.key_101_2012()
Key 101 pt Hankel filter, as published in [Key_2012].

Taken from file kk101Hankel.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_101_CosSin_2012()
Key 101 pt CosSin filter, as published in [Key_2012].

Taken from file kk101CosSin.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_2009()
Key 201 pt Hankel filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.key_201_2012()
Key 201 pt Hankel filter, as published in [Key_2012].

Taken from file kk201Hankel.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_CosSin_2012()
Key 201 pt CosSin filter, as published in [Key_2012].

Taken from file kk201CosSin.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_241_CosSin_2009()
Key 241 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.key_401_2009()
Key 401 pt Hankel filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.key_51_2012()
Key 51 pt Hankel filter, as published in [Key_2012].

Taken from file kk51Hankel.txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_601_CosSin_2009()
Key 601 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.key_81_CosSin_2009()
Key 81 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

40 Chapter 3. License information

http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.5.2

empymod.filters.kong_241_2007()
Kong 241 pt Hankel filter, as published in [Kong_2007].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.kong_61_2007()
Kong 61 pt Hankel filter, as published in [Kong_2007].

Taken from file FilterModules.f90 provided with 1DCSEM.

License: Apache License, Version 2.0,.

empymod.filters.wer_201_2018()
Werthmüller 201 pt Hankel filter, 2018.

Designed with the empymod add-on fdesign, see https://github.com/empymod/article-fdesign.

License: Apache License, Version 2.0,.

3.5.5 utils – Utilites

Utilities for model such as checking input parameters.

This module consists of four groups of functions:

0. General settings

1. Class EMArray

2. Input parameter checks for modelling

3. Internal utilities

class empymod.utils.EMArray
Subclassing an ndarray: add amplitude <amp> and phase <pha>.

Parameters realpart : array

1. Real part of input, if input is real or complex.

2. Imaginary part of input, if input is pure imaginary.

3. Complex input.

In cases 2 and 3, imagpart must be None.

imagpart: array, optional

Imaginary part of input. Defaults to None.

Examples

>>> import numpy as np
>>> from empymod.utils import EMArray
>>> emvalues = EMArray(np.array([1,2,3]), np.array([1, 0, -1]))
>>> print('Amplitude : ', emvalues.amp)
Amplitude : [1.41421356 2. 3.16227766]
>>> print('Phase : ', emvalues.pha)
Phase : [45. 0. -18.43494882]

3.5. Code 41

http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/empymod/article-fdesign
http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.5.2

Attributes

amp (ndarray) Amplitude of the input data.
pha (ndarray) Phase of the input data, in degrees, lag-defined (increasing with increasing offset.) To

get lead-defined phases, multiply imagpart by -1 before passing through this function.

empymod.utils.check_time_only(time, signal, verb)
Check time and signal parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters time : array_like

Times t (s).

signal : {None, 0, 1, -1}

Source signal:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns time : float

Time, checked for size and assured min_time.

empymod.utils.check_time(time, signal, ft, ftarg, verb)
Check time domain specific input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters time : array_like

Times t (s).

signal : {None, 0, 1, -1}

Source signal:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}

Flag for Fourier transform.

ftarg : str or filter from empymod.filters or array_like,

Only used if signal !=None. Depends on the value for ft:

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns time : float

Time, checked for size and assured min_time.

freq : float

42 Chapter 3. License information

empymod Documentation, Release 1.5.2

Frequencies required for given times and ft-settings.

ft, ftarg

Checked if valid and set to defaults if not provided, checked with signal.

empymod.utils.check_model(depth, res, aniso, epermH, epermV, mpermH, mpermV, xdirect,
verb)

Check the model: depth and corresponding layer parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is cal-
culated analytically in the frequency domain, if False it is calculated in the
wavenumber domain.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns depth : array

Depths of layer interfaces, adds -infty at beginning if not present.

res : array

As input, checked for size.

aniso : array

As input, checked for size. If None, defaults to an array of ones.

epermH, epermV : array_like

As input, checked for size. If None, defaults to an array of ones.

mpermH, mpermV : array_like

As input, checked for size. If None, defaults to an array of ones.

isfullspace : bool

If True, the model is a fullspace (res, aniso, epermH, epermV, mpermM, and
mpermV are in all layers the same).

empymod.utils.check_frequency(freq, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Calculate frequency-dependent parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

3.5. Code 43

empymod Documentation, Release 1.5.2

Parameters freq : array_like

Frequencies f (Hz).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns freq : float

Frequency, checked for size and assured min_freq.

etaH, etaV : array

Parameters etaH/etaV, same size as provided resistivity.

zetaH, zetaV : array

Parameters zetaH/zetaV, same size as provided resistivity.

empymod.utils.check_hankel(ht, htarg, verb)
Check Hankel transform parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters ht : {‘fht’, ‘qwe’, ‘quad’}

Flag to choose the Hankel transform.

htarg : str or filter from empymod.filters or array_like,

Depends on the value for ht.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ht, htarg

Checked if valid and set to defaults if not provided.

empymod.utils.check_opt(opt, loop, ht, htarg, verb)
Check optimization parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters opt : {None, ‘parallel’, ‘spline’}

Optimization flag.

loop : {None, ‘freq’, ‘off’}

Loop flag.

ht : str

Flag to choose the Hankel transform.

44 Chapter 3. License information

empymod Documentation, Release 1.5.2

htarg : array_like,

Depends on the value for ht.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns use_spline : bool

Boolean if to use spline interpolation.

use_ne_eval : bool

Boolean if to use numexpr.

loop_freq : bool

Boolean if to loop over frequencies.

loop_off : bool

Boolean if to loop over offsets.

empymod.utils.check_dipole(inp, name, verb)
Check dipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Pole coordinates (m): [pole-x, pole-y, pole-z].

name : str, {‘src’, ‘rec’}

Pole-type.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns inp : list

List of pole coordinates [x, y, z].

ninp : int

Number of inp-elements

empymod.utils.check_bipole(inp, name)
Check di-/bipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Coordinates of inp (m): [dipole-x, dipole-y, dipole-z, azimuth, dip] or.
[bipole-x0, bipole-x1, bipole-y0, bipole-y1, bipole-z0, bipole-z1].

name : str, {‘src’, ‘rec’}

Pole-type.
Returns inp : list

As input, checked for type and length.

ninp : int

Number of inp.

ninpz : int

Number of inp depths (ninpz is either 1 or ninp).

isdipole : bool

3.5. Code 45

empymod Documentation, Release 1.5.2

True if inp is a dipole.

empymod.utils.check_ab(ab, verb)
Check source-receiver configuration.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters ab : int

Source-receiver configuration.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ab_calc : int

Adjusted source-receiver configuration using reciprocity.

msrc, mrec : bool

If True, src/rec is magnetic; if False, src/rec is electric.

empymod.utils.check_solution(solution, signal, ab, msrc, mrec)
Check required solution with parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters solution : str

String to define analytical solution.

signal : {None, 0, 1, -1}

Source signal:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

msrc, mrec : bool

True if src/rec is magnetic, else False.

empymod.utils.get_abs(msrc, mrec, srcazm, srcdip, recazm, recdip, verb)
Get required ab’s for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters msrc, mrec : bool

True if src/rec is magnetic, else False.

srcazm, recazm : float

Horizontal source/receiver angle (azimuth).

srcdip, recdip : float

Vertical source/receiver angle (dip).

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ab_calc : array of int

ab’s to calculate for this bipole.

46 Chapter 3. License information

empymod Documentation, Release 1.5.2

empymod.utils.get_geo_fact(ab, srcazm, srcdip, recazm, recdip, msrc, mrec)
Get required geometrical scaling factor for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters ab : int

Source-receiver configuration.

srcazm, recazm : float

Horizontal source/receiver angle.

srcdip, recdip : float

Vertical source/receiver angle.
Returns fact : float

Geometrical scaling factor.

empymod.utils.get_azm_dip(inp, iz, ninpz, intpts, isdipole, strength, name, verb)
Get angles, interpolation weights and normalization weights.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Input coordinates (m):

• [x0, x1, y0, y1, z0, z1] (bipole of finite length)

• [x, y, z, azimuth, dip] (dipole, infinitesimal small)

iz : int

Index of current di-/bipole depth (-).

ninpz : int

Total number of di-/bipole depths (ninpz = 1 or npinz = nsrc) (-).

intpts : int

Number of integration points for bipole (-).

isdipole : bool

Boolean if inp is a dipole.

strength : float, optional

Source strength (A):

• If 0, output is normalized to source and receiver of 1 m length, and
source strength of 1 A.

• If != 0, output is returned for given source and receiver length, and
source strength.

name : str, {‘src’, ‘rec’}

Pole-type.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns tout : list of floats or arrays

Dipole coordinates x, y, and z (m).

azm : float or array of floats

Horizontal angle (azimuth).

3.5. Code 47

empymod Documentation, Release 1.5.2

dip : float or array of floats

Vertical angle (dip).

g_w : float or array of floats

Factors from Gaussian interpolation.

intpts : int

As input, checked.

inp_w : float or array of floats

Factors from source/receiver length and source strength.

empymod.utils.get_off_ang(src, rec, nsrc, nrec, verb)
Get depths, offsets, angles, hence spatial input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters src, rec : list of floats or arrays

Source/receiver dipole coordinates x, y, and z (m).

nsrc, nrec : int

Number of sources/receivers (-).

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns off : array of floats

Offsets

angle : array of floats

Angles

empymod.utils.get_layer_nr(inp, depth)
Get number of layer in which inp resides.

Note: If zinp is on a layer interface, the layer above the interface is chosen.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Dipole coordinates (m)

depth : array

Depths of layer interfaces.
Returns linp : int or array_like of int

Layer number(s) in which inp resides (plural only if bipole).

zinp : float or array

inp[2] (depths).

empymod.utils.printstartfinish(verb, inp=None, kcount=None)
Print start and finish with time measure and kernel count.

empymod.utils.conv_warning(conv, targ, name, verb)
Print error if QWE/QUAD did not converge at least once.

empymod.utils.set_minimum(min_freq=None, min_time=None, min_off=None,
min_param=None, min_angle=None)

Set minimum values of parameters.

The given parameters are set to its minimum value if they are smaller.

48 Chapter 3. License information

empymod Documentation, Release 1.5.2

Parameters min_freq : float, optional

Minimum frequency [Hz] (default 1e-20 Hz).

min_time : float, optional

Minimum time [s] (default 1e-20 s).

min_off : float, optional

Minimum offset [m] (default 1e-3 m). Also used to round src- & rec-
coordinates.

min_param : float, optional

Minimum aniso, [m/e]perm[H/V] [-] (default 1e-20).

min_angle : float, optional

Minimum angle [-] (default 1e-10).

empymod.utils.get_minimum()
Return the current minimum values.

Returns min_vals : dict

Dictionary of current minimum values with keys

• min_freq : float

• min_time : float

• min_off : float

• min_param : float

• min_angle : float

For a full description of these options, see set_minimum.

3.5. Code 49

empymod Documentation, Release 1.5.2

50 Chapter 3. License information

Bibliography

[Anderson_1975] Anderson, W.L., 1975, Improved digital filters for evaluating Fourier and Hankel transform
integrals: USGS Unnumbered Series; http://pubs.usgs.gov/unnumbered/70045426/report.pdf.

[Anderson_1979] Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1
by adaptive digital filtering: Geophysics, 44, 1287–1305; DOI: 10.1190/1.1441007.

[Anderson_1982] Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM
Trans. on Math. Softw. (TOMS), 8, 344–368; DOI: 10.1145/356012.356014.

[Ghosh_1971] Ghosh, D. P., 1971, The application of linear filter theory to the direct interpretation of geo-
electrical resistivity sounding measurements: Geophysical Prospecting, 19, 192–217; DOI: 10.1111/j.1365-
2478.1971.tb00593.x.

[Haines_and_Jones_1988] Haines, G. V., and A. G. Jones, 1988, Logarithmic Fourier transformation: Geophysi-
cal Journal, 92, 171–178; DOI: 10.1111/j.1365-246X.1988.tb01131.x.

[Hamilton_2000] Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly
Notices of the Royal Astronomical Society, 312, pages 257-284; DOI: 10.1046/j.1365-8711.2000.03071.x;
Website of FFTLog: casa.colorado.edu/~ajsh/FFTLog.

[Hunziker_et_al_2015] Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a lay-
ered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80(1), F1–F18;
DOI: 10.1190/geo2013-0411.1; Software: software.seg.org/2015/0001.

[Key_2009] Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology
and synthetic studies for resolving thin resistive layers: Geophysics, 74(2), F9–F20; DOI: 10.1190/1.3058434.
Software: marineemlab.ucsd.edu/Projects/Occam/1DCSEM.

[Key_2012] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77(3), F21–F30;
DOI: 10.1190/geo2011-0237.1; Software: software.seg.org/2012/0003.

[Kong_2007] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium:
Geophysical Prospecting, 55, 83–89; DOI: 10.1111/j.1365-2478.2006.00585.x.

[Shanks_1955] Shanks, D., 1955, Non-linear transformations of divergent and slowly convergent sequences:
Journal of Mathematics and Physics, 34, 1–42; DOI: 10.1002/sapm19553411.

[Slob_et_al_2010] Slob, E., J. Hunziker, and W. A. Mulder, 2010, Green’s tensors for the diffusive electric field
in a VTI half-space: PIER, 107, 1–20: DOI: 10.2528/PIER10052807.

[Talman_1978] Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal
of Computational Physics, 29, pages 35-48; DOI: 10.1016/0021-9991(78)90107-9.

[Trefethen_2000] Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for Industrial and Ap-
plied Mathematics (SIAM), volume 10 of Software, Environments, and Tools, chapter 12, page 129;
DOI: 10.1137/1.9780898719598.ch12.

51

http://pubs.usgs.gov/unnumbered/70045426/report.pdf
http://doi.org/10.1190/1.1441007
http://doi.org/10.1145/356012.356014
http://doi.org/10.1111/j.1365-2478.1971.tb00593.x
http://doi.org/10.1111/j.1365-2478.1971.tb00593.x
http://doi.org/10.1111/j.1365-246X.1988.tb01131.x
http://doi.org/10.1046/j.1365-8711.2000.03071.x
http://casa.colorado.edu/~ajsh/FFTLog
http://doi.org/10.1190/geo2013-0411.1
http://software.seg.org/2015/0001
http://doi.org/10.1190/1.3058434
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://doi.org/10.1190/geo2011-0237.1
http://software.seg.org/2012/0003
http://doi.org/10.1111/j.1365-2478.2006.00585.x
http://doi.org/10.1002/sapm19553411
http://doi.org/10.2528/PIER10052807
http://doi.org/10.1016/0021-9991(78)90107-9
http://doi.org/10.1137/1.9780898719598.ch12

empymod Documentation, Release 1.5.2

[Weniger_1989] Weniger, E. J., 1989, Nonlinear sequence transformations for the acceleration of convergence
and the summation of divergent series: Computer Physics Reports, 10, 189–371; arXiv: abs/math/0306302.

[Werthmuller_2017] Werthmüller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media
in Python: empymod: Geophysics, 82(6), WB9-WB19; DOI: 10.1190/geo2016-0626.1.

[Werthmuller_2017b] Werthmüller, D., 2017, Getting started with controlled-source electromagnetic 1D model-
ing: The Leading Edge, 36, 352-355; DOI: 10.1190/tle36040352.1.

[Wynn_1956] Wynn, P., 1956, On a device for computing the 𝑒𝑚(𝑆𝑛) tranformation: Math. Comput., 10, 91–96;
DOI: 10.1090/S0025-5718-1956-0084056-6.

[Ziolkowski_and_Slob] Ziolkowski, A., and E. Slob, 2018, Introduction to Controlled-Source Electromagnetic
Methods: Cambridge University Press; expected to be published late 2018.

52 Bibliography

https://arxiv.org/abs/math/0306302
http://doi.org/10.1190/geo2016-0626.1
http://doi.org/10.1190/tle36040352.1
http://doi.org/10.1090/S0025-5718-1956-0084056-6

Python Module Index

e
empymod, 7
empymod.filters, 39
empymod.kernel, 34
empymod.model, 19
empymod.transform, 36
empymod.utils, 41

53

empymod Documentation, Release 1.5.2

54 Python Module Index

Index

A
analytical() (in module empymod.model), 29
anderson_801_1982() (in module empymod.filters), 39
angle_factor() (in module empymod.kernel), 34

B
bipole() (in module empymod.model), 19

C
check_ab() (in module empymod.utils), 46
check_bipole() (in module empymod.utils), 45
check_dipole() (in module empymod.utils), 45
check_frequency() (in module empymod.utils), 43
check_hankel() (in module empymod.utils), 44
check_model() (in module empymod.utils), 43
check_opt() (in module empymod.utils), 44
check_solution() (in module empymod.utils), 46
check_time() (in module empymod.utils), 42
check_time_only() (in module empymod.utils), 42
conv_warning() (in module empymod.utils), 48

D
DigitalFilter (class in empymod.filters), 39
dipole() (in module empymod.model), 25
dlf() (in module empymod.transform), 38

E
EMArray (class in empymod.utils), 41
empymod (module), 7
empymod.filters (module), 39
empymod.kernel (module), 34
empymod.model (module), 19
empymod.transform (module), 36
empymod.utils (module), 41

F
fem() (in module empymod.model), 33
ffht() (in module empymod.transform), 37
fft() (in module empymod.transform), 38
fftlog() (in module empymod.transform), 38
fht() (in module empymod.transform), 36
fhti() (in module empymod.transform), 39
fields() (in module empymod.kernel), 35

fqwe() (in module empymod.transform), 38
fullspace() (in module empymod.kernel), 35

G
get_abs() (in module empymod.utils), 46
get_azm_dip() (in module empymod.utils), 47
get_geo_fact() (in module empymod.utils), 46
get_layer_nr() (in module empymod.utils), 48
get_minimum() (in module empymod.utils), 49
get_off_ang() (in module empymod.utils), 48
get_spline_values() (in module empymod.transform),

39
gpr() (in module empymod.model), 31
greenfct() (in module empymod.kernel), 35

H
halfspace() (in module empymod.kernel), 35
hquad() (in module empymod.transform), 37
hqwe() (in module empymod.transform), 36

K
key_101_2009() (in module empymod.filters), 39
key_101_2012() (in module empymod.filters), 40
key_101_CosSin_2012() (in module empymod.filters),

40
key_201_2009() (in module empymod.filters), 40
key_201_2012() (in module empymod.filters), 40
key_201_CosSin_2012() (in module empymod.filters),

40
key_241_CosSin_2009() (in module empymod.filters),

40
key_401_2009() (in module empymod.filters), 40
key_51_2012() (in module empymod.filters), 40
key_601_CosSin_2009() (in module empymod.filters),

40
key_81_CosSin_2009() (in module empymod.filters),

40
kong_241_2007() (in module empymod.filters), 40
kong_61_2007() (in module empymod.filters), 41

P
printstartfinish() (in module empymod.utils), 48

55

empymod Documentation, Release 1.5.2

Q
qwe() (in module empymod.transform), 39

R
reflections() (in module empymod.kernel), 35

S
set_minimum() (in module empymod.utils), 48

T
tem() (in module empymod.model), 34

W
wavenumber() (in module empymod.kernel), 34
wavenumber() (in module empymod.model), 32
wer_201_2018() (in module empymod.filters), 41

56 Index

	More information
	Citation
	License information
	Manual
	Roadmap
	Changelog
	Credits
	Code

	Bibliography
	Python Module Index

