
empymod Documentation
Release 1.1.0

Dieter Werthmüller

December 23, 2016

Contents

1 Info 3
1.1 Installation & requirements . 3
1.2 Citation . 3
1.3 License . 3
1.4 Missing features . 3
1.5 Notice . 4
1.6 Note on speed, memory, and accuracy . 5
1.7 FFTLog . 6
1.8 References . 6

2 Code 7
2.1 model – Model EM-responses . 7
2.2 kernel – Kernel calculation . 17
2.3 transform – Hankel and Fourier Transforms . 19
2.4 filters – Digital Filters for FHT . 21
2.5 utils – Utilites . 23

3 Indices and tables 31

Bibliography 33

Python Module Index 35

i

ii

empymod Documentation, Release 1.1.0

Version: 1.1.0; Date: December 23, 2016

Manual for empymod, a one-dimensional, electromagnetic forward modeller in Python.

The electromagnetic python modeller empymod can model electric or magnetic responses due to a three-dimensional
electric or magnetic source in a layered-earth model with electric vertical isotropy (𝜌ℎ, 𝜆), electric permittivity (𝜖ℎ, 𝜖𝑣),
and magnetic permeability (𝜇ℎ, 𝜇𝑣), from very low frequencies (𝑓 → 0 Hz) to very high frequencies (𝑓 → GHz).

Contents:

Contents 1

empymod Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Info

1.1 Installation & requirements

Just add the path to empymod to your python-path variable.

Alternatively, to install it in your python distribution (linux), run:

python setup.py install

Required are python version 3 or higher and the modules NumPy, SciPy, and numexpr.

1.2 Citation

I am in the process of publishing an article regarding empymod, and I will put the info here once it is real-
ity. If you publish results for which you used empymod, please consider citing this article. Also consider citing
[Hunziker_et_al_2015] and [Key_2012], without which empymod would not exist.

1.3 License

Copyright 2016 Dieter Werthmüller

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

See the LICENSE-file in the root directory for a full reprint of the Apache License.

1.4 Missing features

A list of things that should or could be added and improved, in decreasing priority:

3

http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.1.0

• Tests, tests, and more tests: The modeller empymod is lacking an extensive testing suite. But it should have
one. This would ideally be combined with automated testing by, for instance, Travis. It should also include
some proper benchmarks.

• Rewrite model and utils in order to provide the survey and model parameters as well as the modelling options
as structured array/dict/class (which one is suited best?), so that the main (potentially only) calculation routine
would be empymod(survey, model, options). Improved abstraction of the calling part.

• More modelling routines:

– arbitrary source and receiver dipole lengths

– arbitrary source and receiver rotations

– convolution with a wavelet for GPR (proper version of model.gpr)

– pure wavenumber output-routine (proper version of model.wavenumber)

– variable receiver depths within one calculation

– various source-receiver arrangements (loops etc)

– multiple sources within one calculation

– Load and Save functions to store and load model, together with all information.

• Kernel

– Include scipy.integrate.quad as an additional Hankel transform. There are cases when both QWE and
FHT struggle, e.g. at very short offsets with very high frequencies (GPR).

– A cython or numba (pure C?) implementation of the kernel and the transform modules. Maybe not
worth it, as it may improve speed, but decrease accessibility. Both at the same time would be nice. A
fast C-version for calculations (inversions), and a Python-version to tinker with for interested folks.

• GUI frontend

1.5 Notice

This product includes software developed at The Mexican Institute of Petroleum IMP (Instituto Mexicano del Petróleo,
http://www.imp.mx).

The project was funded through The Mexican National Council of Science and Technology (Consejo Nacional de
Ciencia y Tecnología, http://www.conacyt.mx).

This product is a derivative work of [Hunziker_et_al_2015] and [Key_2012], and their publicly available software:

1. Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse
isotropic medium: A new look at an old problem: Geophysics, 80, F1-F18; DOI: 10.1190/geo2013-0411.1;
Software: software.seg.org/2015/0001.

2. Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21-F30; DOI:
10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003.

Both pieces of software are published under the SEG disclaimer. Parts of the modeller emmod from Hunziker et al,
2015, is furthermore released under the Common Public License Version 1.0 (CPL). See the NOTICE-file in the root
directory for more information and a reprint of the SEG disclaimer and the CPL.

4 Chapter 1. Info

http://www.imp.mx
http://www.conacyt.mx
http://dx.doi.org/10.1190/geo2013-0411.1
http://software.seg.org/2015/0001
http://dx.doi.org/10.1190/GEO2011-0237.1
http://software.seg.org/2012/0003

empymod Documentation, Release 1.1.0

1.6 Note on speed, memory, and accuracy

There is the usual trade-off between speed, memory, and accuracy. Very generally speaking we can say that the FHT
is faster than QWE, but QWE is much easier on memory usage. I doubt you will ever run into memory issues with
QWE, whereas for FHT you might for ten thousands of offsets or hundreds of layers. Furthermore, QWE allows you
to control the accuracy.

There are two optimisation possibilities included via the opt-flag: parallelisation (opt=’parallel’) and spline
interpolation (opt=’spline’). They are switched off by default. The optimization opt=’parallel’ only
affects speed and memory usage, whereas opt=’spline’ also affects precision!

Calculation of many source and receiver positions is fastest if they remain at the same depth, as they can be calculated
in one kernel-call. If depths do change, one has to loop over them.

I am sure empymod could be made much faster with cleverer coding style or with the likes of cython or numba.
Suggestions and contributions are welcomed!

1.6.1 Parallelisation

If opt = ’parallel’, a good dozen of the most time-consuming statements are calculated by using the num-
expr package (https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide). These statements are all in the ker-
nel-functions greenfct, reflections, and fields, and all involve Γ in one way or another, often calculating square roots or
exponentials. As Γ has dimensions (#frequencies, #offsets, #layers, #lambdas), it can become fairly big.

This parallelisation will make empymod faster if you calculate a lot of offsets/frequencies at once, but slower for few
offsets/frequencies. Best practice is to check first which one is faster. (You can use the included jupyter notebook-
benchmark.)

1.6.2 Spline interpolation

If opt = ’spline’, the so-called lagged convolution or splined variant of the FHT (depending on htarg) or the
splined version of the QWE are applied. The spline option should be used with caution, as it is an interpolation and
therefore less precise than the non-spline version. However, it significantly speeds up QWE, and massively speeds up
FHT. (The numexpr-version of the spline option is slower than the pure spline one, and therefore it is only possible to
have either ’parallel’ or ’spline’ on.)

Setting opt = ’spline’ is generally faster. Good speed-up is achieved for QWE by setting maxint as low as
possible. Also, the higher nquad is, the higher the speed-up will be. The variable pts_per_dec has also some
influence. For FHT, big improvements are achieved for long FHT-filters and for many offsets/frequencies (thousands).
Additionally, spline minimizes memory requirements a lot. Speed-up is greater if all source-receiver angles are iden-
tical.

FHT: Default for pts_per_dec = None, which is the original lagged convolution, where the spacing is defined
by the filter-base, the transform is carried out first followed by spline-interpolation. You can set this parameter to an
integer, which defines the number of points to evaluate per decade. In this case the spline-interpolation is carried out
first, followed by the transformation. The original lagged convolution is generally the fastest for a very good precision.
However, by setting pts_per_dec appropriately one can achieve higher precision, normally at the cost of speed.

Warning: Keep in mind that it uses interpolation, and is therefore not as accurate as the non-spline version. Use
with caution and always compare with the non-spline version if you can apply the spline-version to your problem
at hand!

Be aware that the QWE- and the FHT-Versions for the frequency-to-time transformation always use the splined version
and always loop over offsets.

1.6. Note on speed, memory, and accuracy 5

https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide

empymod Documentation, Release 1.1.0

1.6.3 Looping

By default, you can calculate many offsets and many frequencies all in one go, vectorized (for the FHT), which is the
default. The loop parameter gives you the possibility to force looping over frequencies or offsets. This parameter
can have severe effects on both runtime and memory usage. Play around with this factor to find the fastest version for
your problem at hand. It ALWAYS loops over frequencies if ht = ’QWE’ or if opt = ’spline’. All vectorized
is very fast if there are few offsets or few frequencies. If there are many offsets and many frequencies, looping over
the smaller of the two will be faster. Choosing the right looping together with opt = ’parallel’ can have a huge
influence.

1.6.4 Vertical components

It is advised to use xdirect = True (the default) if source and receiver are in the same layer to calculate

• the vertical electric field due to a vertical electric source,

• configurations that involve vertical magnetic components (source or receiver),

• all configurations when source and receiver depth are exactly the same.

The Hankel transforms methods are having sometimes difficulties transforming these functions.

1.7 FFTLog

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT originally proposed by [Talman_1978].
The code used by empymod was published in Appendix B of [Hamilton_2000] and is publicly available at
casa.colorado.edu/~ajsh/FFTLog. From the FFTLog-website:

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a
periodic sequence of logarithmically spaced points.

FFTlog can be used for the Hankel as well as for the Fourier Transform, but currently empymod uses it only
for the Fourier transform. It uses a simplified version of the python implementation of FFTLog, pyfftlog
(github.com/prisae/pyfftlog).

1.8 References

6 Chapter 1. Info

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog

CHAPTER 2

Code

2.1 model – Model EM-responses

EM-modelling routines. The implemented routines might not be the fastest solution to your specific problem. Use
these routines as template to create your own, problem-specific modelling routine!

So far implemented are two routines, both of them for:

• frequency or time

• source and receiver can be either electric or magnetic

The routines are

• dipole:

– Point dipole source(s) in direction x, y, or z, all sources at the same depth.

– Point dipole receivers(s) in direction x, y, or z, all receivers at the same depth.

– Various frequencies or times.

• srcbipole:

– Arbitrary bipole source.

– Point dipole receivers(s) in direction x, y, or z, all receivers at the same depth.

– Various frequencies or times.

• bipole: srcbipole will be superseded eventually by bipole, a general source- and receiver-bipole routine.

The above routines make use of the two core routines:

• fem: Calculate wavenumber-domain electromagnetic field and carry out the Hankel transform to the
frequency domain.

• tem: Carry out the Fourier transform to time domain after fem.

Two routines are shortcuts for frequency- and time-domain dipoles, respectively, and mainly in for legacy reasons:

• frequency: Shortcut of dipole for frequency-domain calculation.

• time: Shortcut of dipole for time-domain calculation.

Two more routines are more kind of examples and cannot be regarded stable; they can serve as template to create your
own routines:

• gpr: Calculate the Ground-Penetrating Radar (GPR) response.

7

empymod Documentation, Release 1.1.0

• wavenumber: Calculate the electromagnetic wavenumber-domain solution.

empymod.model.dipole(src, rec, depth, res, freqtime, signal=None, ab=11, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, ft=’sin’, ftarg=None, opt=None, loop=None, verb=1)

Return the electromagnetic field due to a dipole source.

Calculate the electromagnetic frequency- or time-domain field due to an infinitesimal small electric or magnetic
dipole source, measured by infinitesimal small electric or magnetic dipole receivers; source and receivers are
directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers
are at the same depth.

Use the functions bipole or srcbipole to calculate bipoles of finite length and arbitrary angle.

Parameters src : list of floats or arrays

Source coordinates (m): [src-x, src-y, src-z]. The x- and y-coordinates can be arrays, z
is a single value. The x- and y-coordinates must have the same dimension.

rec : list of floats or arrays

Receiver coordinates (m): [rec-x, rec-y, rec-z]. The x- and y-coordinates can be arrays,
z is a single value. The x- and y-coordinates must have the same dimension.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric

receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic

receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH : array_like, optional

8 Chapter 2. Code

empymod Documentation, Release 1.1.0

Horizontal electric permittivities epsilon_h (-); #epermH = #res. Defaults to ones.

epermV : array_like, optional

Vertical electric permittivities epsilon_v (-); #epermV = #res. Defaults to ones.

mpermH : array_like, optional

Horizontal magnetic permeabilities mu_h (-); #mpermH = #res. Defaults to ones.

mpermV : array_like, optional

Vertical magnetic permeabilities mu_v (-); #mpermV = #res. Defaults to ones.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated ana-
lytically in the frequency domain, if False it is calculated in the wavenumber domain.
Defaults to True.

ht : {‘fht’, ‘qwe’}, optional

Flag to choose either the Fast Hankel Transform (FHT) or the Quadrature-With-
Extrapolation (QWE) for the Hankel transform. Defaults to ‘fht’.

htarg : str or filter from empymod.filters or array_like, optional

Depends on the value for ht:

• If ht = ‘fht’: array containing: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter method itself. (de-
fault: empymod.filters.key_401_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default: None)

• If ht = ‘qwe’: array containing: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals (default: 40)

– pts_per_dec: points per decade (only relevant if opt=’spline’) (default: 80)

All are optional, you only have to maintain the order. To only change nquad to 11
and use the defaults otherwise, you can provide htarg=[’‘, ‘’, 11].

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’}, optional

Only used if signal != None. Flag to choose either the Sine- or Cosine-Filter, the
Quadrature-With-Extrapolation (QWE), or FFTLog for the Fourier transform. De-
faults to ‘sin’.

ftarg : str or filter from empymod.filters or array_like, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: array containing: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter method
itself. (Default: empymod.filters.key_201_CosSin_2012())

2.1. model – Model EM-responses 9

empymod Documentation, Release 1.1.0

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. (Default: None)

• If ft = ‘qwe’: array containing: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals (default: 200)

– pts_per_dec: points per decade (only relevant if spline=True) (de-
fault: 20)

All are optional, you only have to maintain the order. To only change
nquad to 11 and use the defaults otherwise, you can provide ftarg=[’‘, ‘’,
11].

• If ft = ‘fftlog’: array containing: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

All are optional, you only have to maintain the order. To only change
add_dec to [-1, 1] and use the defaults otherwise, you can provide
ftarg=[’‘, [-1, 1]].

opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most expen-
sive statements. Always check if it actually improves performance for a
specific problem. It can speed up the calculation for big arrays, but will
most likely be slower for small arrays. It will use all available cores for
these specific statements, which all contain Gamma in one way or an-
other, which has dimensions (#frequencies, #offsets, #layers, #lambdas),
therefore can grow pretty big.

• If ‘spline’, the lagged convolution or splined variant of the FHT or the
splined version of the QWE are used. Use with caution and check with
the non-spline version for a specific problem. (Can be faster, slower, or
plainly wrong, as it uses interpolation.) If spline is set it will make use of
the parameter pts_per_dec that can be defined in htarg. If pts_per_dec is
not set for FHT, then the lagged version is used, else the splined.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’ also
affects precision! Please read the note in the README documentation for more
information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’)
or over offsets (‘off’), default is None. It always loops over frequencies if ht =
’qwe’ or if opt = ’spline’. Calculating everything vectorized is fast for
few offsets OR for few frequencies. However, if you calculate many frequencies

10 Chapter 2. Code

empymod Documentation, Release 1.1.0

for many offsets, it might be faster to loop over frequencies. Only comparing the
different versions will yield the answer for your specific problem at hand!

verb : {0, 1, 2}, optional

Level of verbosity, defaults to 1:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print warnings and information.

Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].

However, source and receiver are normalised. So for instance in the electric case
the source strength is 1 A and its length is 1 m. So the electric field could also be
written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.

Examples

>>> import numpy as np
>>> from empymod import dipole
>>> src = [0, 0, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = dipole(src, rec, depth, res, freqtime=1, verb=0)
>>> print(EMfield)
[1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j
-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

empymod.model.srcbipole(src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, msrc=False, recdir=1,
intpts=10, xdirect=True, ht=’fht’, htarg=None, ft=’sin’, ftarg=None,
opt=None, loop=None, verb=1)

Return the electromagnetic field due to a bipole source.

Calculate the electromagnetic frequency- or time-domain field due to an arbitrary finite electric or magnetic
bipole source, measured by infinitesimal small electric or magnetic dipole receivers; receivers are directed along
the principal directions x, y, or z, and all receivers are at the same depth.

Parameters src : list of floats

Source coordinates (m): [src-x0, src-x1, src-y0, src-y1, src-z0, src-z1].

rec : list of floats or arrays

2.1. model – Model EM-responses 11

empymod Documentation, Release 1.1.0

Receiver coordinates (m): [rec-x, rec-y, rec-z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH : array_like, optional

Horizontal electric permittivities epsilon_h (-); #epermH = #res. Defaults to
ones.

epermV : array_like, optional

Vertical electric permittivities epsilon_v (-); #epermV = #res. Defaults to ones.

mpermH : array_like, optional

Horizontal magnetic permeabilities mu_h (-); #mpermH = #res. Defaults to ones.

mpermV : array_like, optional

Vertical magnetic permeabilities mu_v (-); #mpermV = #res. Defaults to ones.

msrc : boolean, optional

If True, source is magnetic.

recdir : int, optional

Receiver direction, defaults to 1:

• 1 : Ex

• 2 : Ey

• 3 : Ez

• 4 : Hx

• 5 : Hy

• 6 : Hz

intpts : int, optional

12 Chapter 2. Code

empymod Documentation, Release 1.1.0

Number of integration points for bipole source, defaults to 10:

• nr < 3 : bipole, but calculated as dipole at centerpoint

• nr >= 3 : bipole

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated
analytically in the frequency domain, if False it is calculated in the wavenumber
domain. Defaults to True.

ht : {‘fht’, ‘qwe’}, optional

Flag to choose either the Fast Hankel Transform (FHT) or the Quadrature-With-
Extrapolation (QWE) for the Hankel transform. Defaults to ‘fht’.

htarg : str or filter from empymod.filters or array_like, optional

Depends on the value for ht:

• If ht = ‘fht’: array containing: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter
method itself. (default: empymod.filters.key_401_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default:
None)

• If ht = ‘qwe’: array containing: [rtol, atol, nquad, maxint,
pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals (default:
40)

– pts_per_dec: points per decade (only relevant if opt=’spline’) (de-
fault: 80)

All are optional, you only have to maintain the order. To only change
nquad to 11 and use the defaults otherwise, you can provide htarg=[’‘,
‘’, 11].

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’}, optional

Only used if signal != None. Flag to choose either the Sine- or Cosine-Filter, the
Quadrature-With-Extrapolation (QWE), or FFTLog for the Fourier transform.
Defaults to ‘sin’.

ftarg : str or filter from empymod.filters or array_like, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: array containing: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or
the filter method itself. (Default: empy-
mod.filters.key_201_CosSin_2012())

2.1. model – Model EM-responses 13

empymod Documentation, Release 1.1.0

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. (Default: None)

• If ft = ‘qwe’: array containing: [rtol, atol, nquad, maxint,
pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals (default:
200)

– pts_per_dec: points per decade (only relevant if spline=True) (de-
fault: 20)

All are optional, you only have to maintain the order. To only change
nquad to 11 and use the defaults otherwise, you can provide ftarg=[’‘,
‘’, 11].

• If ft = ‘fftlog’: array containing: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

All are optional, you only have to maintain the order. To only change
add_dec to [-1, 1] and use the defaults otherwise, you can provide
ftarg=[’‘, [-1, 1]].

opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most expen-
sive statements. Always check if it actually improves performance for
a specific problem. It can speed up the calculation for big arrays, but
will most likely be slower for small arrays. It will use all available
cores for these specific statements, which all contain Gamma in one
way or another, which has dimensions (#frequencies, #offsets, #lay-
ers, #lambdas), therefore can grow pretty big.

• If ‘spline’, the lagged convolution or splined variant of the FHT or
the splined version of the QWE are used. Use with caution and check
with the non-spline version for a specific problem. (Can be faster,
slower, or plainly wrong, as it uses interpolation.) If spline is set it will
make use of the parameter pts_per_dec that can be defined in htarg. If
pts_per_dec is not set for FHT, then the lagged version is used, else
the splined.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’ also
affects precision! Please read the note in the README documentation for more
information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’)
or over offsets (‘off’), default is None. It always loops over frequencies if ht =

14 Chapter 2. Code

empymod Documentation, Release 1.1.0

’qwe’ or if opt = ’spline’. Calculating everything vectorized is fast for
few offsets OR for few frequencies. However, if you calculate many frequencies
for many offsets, it might be faster to loop over frequencies. Only comparing the
different versions will yield the answer for your specific problem at hand!

verb : {0, 1, 2}, optional

Level of verbosity, defaults to 1:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print warnings and information.
Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].

However, source and receiver are normalised. So for instance in the electric case
the source strength is 1 A and its length is 1 m. So the electric field could also
be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.

Examples

>>> import numpy as np
>>> from empymod import srcbipole
>>> src = [-50, 50, -50, 50, 75, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = srcbipole(src, rec, depth, res, freqtime=1, verb=0)
>>> print(EMfield)
[1.14061401e-10 -2.07836149e-10j -5.38410978e-12 -2.53976216e-11j
-2.06275951e-12 -3.33525423e-12j -1.10983809e-13 -8.09426365e-13j
1.92903597e-13 -4.55252836e-13j 1.69353850e-13 -3.19059245e-13j
1.18960468e-13 -2.29643807e-13j 8.09247406e-14 -1.68298859e-13j
5.50535020e-14 -1.25316192e-13j 3.80049013e-14 -9.44840453e-14j]

empymod.model.frequency(src, rec, depth, res, freq, ab=11, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, opt=None, loop=None, verb=1)

Shortcut for frequency-domain dipole. See dipole for info.

empymod.model.time(src, rec, depth, res, time, ab=11, signal=0, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, ft=’sin’, ftarg=None, opt=None, loop=’off’, verb=1)

Shortcut for time-domain dipole. See dipole for info.

empymod.model.gpr(src, rec, depth, res, fc=250, ab=11, gain=None, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, opt=None, loop=’off’, verb=1)

Return the Ground-Penetrating Radar signal.

2.1. model – Model EM-responses 15

empymod Documentation, Release 1.1.0

THIS FUNCTION IS IN DEVELOPMENT, USE WITH CAUTION.

Or in other words it is merely an example how one could calculate the GPR-response. However, the currently
included FHT and QWE struggle for these high frequencies, and another Hankel transform has to be included
to make GPR work properly (e.g. scipy.integrate.quad).

•QWE is slow, but does a pretty good job except for very short offsets: only direct wave for offset < 0.1 m,
triangle-like noise at later times.

•FHT is fast. Airwave, direct wave and first reflection are well visible, but afterwards it is very noisy.
A lot is still hard-coded in this routine, for instance the frequency-range used to calculate the response.

For input parameters see frequency, except for:
Parameters fc : float

Centre frequency of GPR-signal (MHz). Sensible values are between 10 MHz
and 3000 MHz.

gain : float

Power of gain function. If None, no gain is applied.
Returns t : array

Times (s)

gprEM : ndarray

GPR response

empymod.model.wavenumber(src, rec, depth, res, freq, wavenumber, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None, xdi-
rect=True, verb=1)

Return the electromagnetic wavenumber-domain field.

THIS FUNCTION IS IN DEVELOPMENT, USE WITH CAUTION.

Or rather, it is for development purposes, to easily get the wavenumber result with the required input checks.

For input parameters see frequency, except for:
Parameters wavenumber : array

Wavenumbers lambda (1/m)
Returns PJ0, PJ1, PJ0b : array

Wavenumber domain EM responses. - PJ0 is angle independent, PJ1 and PJ0b
depend on the angle. - PJ0 and PJ0b are J_0 functions, PJ1 is a J_1 function.

empymod.model.fem(ab, off, angle, zsrc, zrec, lsrc, lrec, depth, freq, etaH, etaV, zetaH, zetaV, xdirect,
isfullspace, ht, htarg, use_spline, use_ne_eval, msrc, mrec, loop_freq, loop_off)

Return the electromagnetic frequency-domain response.

This function is called from one of the above modelling routines. No input-check is carried out here. See the
main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful for
inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

empymod.model.tem(fEM, off, freq, time, signal, ft, ftarg)
Return the time-domain response of the frequency-domain response fEM.

This function is called from one of the above modelling routines. No input-check is carried out here. See the
main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful for
inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

16 Chapter 2. Code

empymod Documentation, Release 1.1.0

2.2 kernel – Kernel calculation

Kernel of empymod, calculates the wavenumber-domain electromagnetic response.

The functions ‘wavenumber’, ‘angle_factor’, ‘fullspace’, ‘greenfct’, ‘reflections’, and ‘fields’ are based on source files
(specified in each function) from the source code distributed with [Hunziker_et_al_2015], which can be found at soft-
ware.seg.org/2015/0001. These functions are (c) 2015 by Hunziker et al. and the Society of Exploration Geophysicists,
http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the root directory for more information regard-
ing the involved licenses.

empymod.kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,
msrc, mrec, use_ne_eval)

Calculate wavenumber domain solution.

Return the wavenumber domain solutions PJ0, PJ1, and PJ0b, which have to be transformed with a Hankel
transform to the frequency domain. PJ0/PJ0b and PJ1 have to be transformed with Bessel functions of order 0
(𝐽0) and 1 (𝐽1), respectively.

This function corresponds loosely to equations 105–107, 111–116, 119–121, and 123–128 in
[Hunziker_et_al_2015], and equally loosely to the file kxwmod.c.

[Hunziker_et_al_2015] uses Bessel functions of orders 0, 1, and 2 (𝐽0, 𝐽1, 𝐽2). The implementations of the
Fast Hankel Transform and the Quadrature-with-Extrapolation in transform are set-up with Bessel functions of
order 0 and 1 only. This is achieved by applying the recurrence formula

𝐽2(𝑘𝑟) =
2

𝑘𝑟
𝐽1(𝑘𝑟) − 𝐽0(𝑘𝑟) .

Note: PJ0 and PJ0b could theoretically be added here into one, and then be transformed in one go. However,
PJ0b has to be multiplied by factAng later. This has to be done after the Hankel transform for methods which
make use of spline interpolation, in order to work for offsets that are not in line with each other.

This function is called from one of the Hankel functions in transform. Consult the modelling routines in
model for a description of the input and output parameters.

If you are solely interested in the wavenumber-domain solution you can call this function directly. However,
you have to make sure all input arguments are correct, as no checks are carried out here.

empymod.kernel.angle_factor(angle, ab, msrc, mrec)
Return the angle-dependent factor.

The whole calculation in the wavenumber domain is only a function of the distance between the source and
the receiver, it is independent of the angel. The angle-dependency is this factor, which can be applied to the
corresponding parts in the wavenumber or in the frequency domain.

The angle_factor corresponds to the sine and cosine-functions in Eqs 105-107, 111-116, 119-121, 123-128.

This function is called from one of the Hankel functions in transform. Consult the modelling routines in
model for a description of the input and output parameters.

empymod.kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH, zetaV, ab, msrc, mrec)
Analytical full-space solutions in the frequency domain.

�̂�𝑒𝑒
𝛼𝛽 , �̂�

𝑒𝑒
3𝛼, �̂�

𝑒𝑒
33, �̂�

𝑒𝑚
𝛼𝛽 , �̂�

𝑒𝑚
𝛼3

This function corresponds to equations 45–50 in [Hunziker_et_al_2015], and loosely to the corresponding files
Gin11.F90, Gin12.F90, Gin13.F90, Gin22.F90, Gin23.F90, Gin31.F90, Gin32.F90, Gin33.F90, Gin41.F90,
Gin42.F90, Gin43.F90, Gin51.F90, Gin52.F90, Gin53.F90, Gin61.F90, and Gin62.F90.

2.2. kernel – Kernel calculation 17

http://software.seg.org/2015/0001
http://software.seg.org/2015/0001
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.1.0

This function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

empymod.kernel.greenfct(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,
msrc, mrec, use_ne_eval)

Calculate Green’s function for TM and TE.

𝑔𝑡𝑚ℎℎ , 𝑔
𝑡𝑚
ℎ𝑧 , 𝑔

𝑡𝑚
𝑧ℎ , 𝑔

𝑡𝑚
𝑧𝑧 , 𝑔

𝑡𝑒
ℎℎ, 𝑔

𝑡𝑒
𝑧𝑧

This function corresponds to equations 108–110, 117/118, 122; 89–94, A18–A23, B13–B15; 97–102 A26–
A31, and B16–B18 in [Hunziker_et_al_2015], and loosely to the corresponding files Gamma.F90, Wprop.F90,
Ptotalx.F90, Ptotalxm.F90, Ptotaly.F90, Ptotalym.F90, Ptotalz.F90, and Ptotalzm.F90.

The Green’s functions are multiplied according to Eqs 105-107, 111-116, 119-121, 123-128; with the factors
inside the integrals.

This function is called from the function kernel.wavenumber.

empymod.kernel.reflections(depth, e_zH, Gam, lrec, lsrc, use_ne_eval)
Calculate Rp, Rm.

𝑅±
𝑛 , �̄�

±
𝑛

This function corresponds to equations 64/65 and A-11/A-12 in [Hunziker_et_al_2015], and loosely to the
corresponding files Rmin.F90 and Rplus.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.fields(depth, Rp, Rm, Gam, lrec, lsrc, zsrc, ab, TM, use_ne_eval)
Calculate Pu+, Pu-, Pd+, Pd-.

𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 , 𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 ;𝑃𝑢±
𝑠−1, 𝑃

𝑢±
𝑛 , 𝑃𝑢±

𝑠−1, 𝑃
𝑢±
𝑛 ;𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛 , 𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛

This function corresponds to equations 81/82, 95/96, 103/104, A-8/A-9, A-24/A-25, and A-32/A-33 in
[Hunziker_et_al_2015], and loosely to the corresponding files Pdownmin.F90, Pdownplus.F90, Pupmin.F90,
and Pdownmin.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.halfspace(xco, yco, zsrc, zrec, res, freq, aniso=1, ab=11)
Return frequency-space domain VTI half-space solution.

Calculates the frequency-space domain electromagnetic response for a half-space below air using the diffusive
approximation, as given in [Slob_et_al_2010].

This routine is not strictly part of empymod and not used by it. However, it can be useful to compare the code to
the analytical solution.

There are a few known typos in the equations of [Slob_et_al_2010]. Write the authors to receive an updated
version!

This could be integrated into empymod by checking if the top-layer is a very resistive layer, hence air, and
the rest is a half-space, and then calling this function instead of wavenumber. (Similar to the way fullspace is
incorporated if all layer parameters are identical.) The time-space domain solution could be implemented as
well.

Parameters xco, yco : array

Inline and crossline coordinates (m)

zsrc, zrec : float

Source and receiver depth (m)

res : float or array

18 Chapter 2. Code

empymod Documentation, Release 1.1.0

Half-space resistivity (Ohm.m)

freq : float

Frequency (Hz)

aniso : float, optional

Anisotropy (-), default = 1

ab : int, optional

Src-Rec config, default = 11; {11, 12, 13, 21, 22, 23, 31, 32, 33}
Returns EM half-space solution

Examples

>>> from empymod.kernel import halfspace
>>> EM = halfspace(1000, 0, 10, 1, 10, 1)
>>> print('HS response : ', EM)
HS response : (3.02186073352e-09-3.87322421836e-10j)

2.3 transform – Hankel and Fourier Transforms

Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform
from frequency to time domain.

The functions for the QWE and FHT Hankel and Fourier transforms are based on source files (speci-
fied in each function) from the source code distributed with [Key_2012], which can be found at soft-
ware.seg.org/2012/0003. These functions are (c) 2012 by Kerry Key and the Society of Exploration Geophysicists,
http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the root directory for more information regard-
ing the involved licenses.

empymod.transform.fht(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
fhtarg, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using the Fast Hankel Transform.

The Fast Hankel Transform is a Digital Filter Method, introduced to geophysics by [Gosh_1971], and made
popular and wide-spread by [Anderson_1975], [Anderson_1979], [Anderson_1982].

This implementation of the FHT follows [Key_2012], equation 6. Without going into the mathematical details
(which can be found in any of the above papers) and following [Key_2012], the FHT method rewrites the Hankel
transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as

𝐹 (𝑟) =

𝑛∑︁
𝑖=1

𝑓(𝑏𝑖/𝑟)ℎ𝑖/𝑟 ,

where ℎ is the digital filter.The Filter abscissae b is given by

𝑏𝑖 = 𝜆𝑖𝑟 = 𝑒𝑎𝑖, 𝑖 = −𝑙,−𝑙 + 1, · · · , 𝑙 ,

with 𝑙 = (𝑛− 1)/2, and 𝑎 is the spacing coefficient.

2.3. transform – Hankel and Fourier Transforms 19

http://software.seg.org/2012/0003
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.1.0

This function is loosely based on get_CSEM1D_FD_FHT.m from the source code distributed with [Key_2012].

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

empymod.transform.hqwe(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
qweargs, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using Quadrature-With-Extrapolation.

Quadrature-With-Extrapolation was introduced to geophysics by [Key_2012]. It is one of many so-called ISE
methods to solve Hankel Transforms, where ISE stands for Integration, Summation, and Extrapolation.

Following [Key_2012], but without going into the mathematical details here, the QWE method rewrites the
Hankel transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as a quadrature sum which form is similar to the FHT (equation 15),

𝐹𝑖 ≈
𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑤𝑗𝑔(𝑥𝑗) =

𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑔(𝑥𝑗) ,

but with various bells and whistles applied (using the so-called Shanks transformation in the form of a routine
called 𝜖-algorithm ([Shanks_1955], [Wynn_1956]; implemented with algorithms from [Trefethen_2000] and
[Weniger_1989]).

This function is based on get_CSEM1D_FD_QWE.m, qwe.m, and getBesselWeights.m from the source code
distributed with [Key_2012].

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

empymod.transform.fft(fEM, time, freq, ftarg)
Fourier Transform using a Cosine- or a Sine-filter.

It follows the Filter methodology [Anderson_1975], see fht for more information.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

This function is based on get_CSEM1D_TD_FHT.m from the source code distributed with [Key_2012].
Returns tEM : array

Returns time-domain EM response of fEM for given time.

empymod.transform.fqwe(fEM, time, freq, qweargs)
Fourier Transform using Quadrature-With-Extrapolation.

It follows the QWE methodology [Key_2012] for the Hankel transform, see hqwe for more information.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

This function is based on get_CSEM1D_TD_QWE.m from the source code distributed with [Key_2012].
Returns tEM : array

Returns time-domain EM response of fEM for given time.

20 Chapter 2. Code

empymod Documentation, Release 1.1.0

empymod.transform.fftlog(fEM, time, freq, ftarg)
Fourier Transform using FFTLog.

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT. FFTLog was presented in Appendix B
of [Hamilton_2000] and published at <http://casa.colorado.edu/~ajsh/FFTLog>.

This function uses a simplified version of pyfftlog, which is a python-version of FFTLog. For more details
regarding pyfftlog see <https://github.com/prisae/pyfftlog>.

Not the full flexibility of FFTLog is available here: Only the logarithmic FFT (fftl in FFTLog), not the Hankel
transform (fht in FFTLog). Furthermore, the following parameters are fixed:

•mu = 0.5 (sine-transform)
•kr = 1 (initial value)
•kropt = 1 (silently adjusts kr)
•dir = 1 (forward)

Furthermore, q is restricted to -1 <= q <= 1.

I am trying to get FFTLog into scipy. If this happens the current implementation will be replaced by the
scipy.fftpack.fftlog-version.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

empymod.transform.qwe(rtol, atol, maxint, inp, intervals, hfstr, lambd=None, off=None, fact-
Ang=None)

Quadrature-With-Extrapolation.

This is the kernel of the QWE method, used for the Hankel (hqwe) and the Fourier (fqwe) Transforms. See hqwe
for an extensive description.

This function is based on qwe.m from the source code distributed with [Key_2012].

empymod.transform.get_spline_values(filt, inp, nr_per_dec=None)
Return required calculation points.

empymod.transform.fhti(rmin, rmax, n, q)
Return parameters required for FFTLog.

2.4 filters – Digital Filters for FHT

Filters for the Fast Hankel Transform (FHT, [Anderson_1982]) and the Fourier Sine and Cosine Transforms
[Anderson_1975].

To calculate the fhtfilter.factor I used

np.around(np.average(fhtfilter.base[1:]/fhtfilter.base[:-1]), 15)

The filters kong_61_2007 and kong_241_2007 from [Kong_2007], and key_101_2009, key_201_2009, key_401_2009,
key_81_CosSin_2009, key_241_CosSin_2009, and key_601_CosSin_2009 from [Key_2009] are taken from
DIPOLE1D, [Key_2009], which can be downloaded at marineemlab.ucsd.edu/Projects/Occam/1DCSEM. DIPOLE1D
is distributed under the license GNU GPL version 3 or later. Kerry Key gave his written permission to re-distribute the
filters under the Apache License, Version 2.0 (email from Kerry Key to Dieter Werthmüller, 21 November 2016).

The filters anderson_801_1982 from [Anderson_1982] and key_51_2012, key_101_2012, key_201_2012,
key_101_CosSin_2012, and key_201_CosSin_2012, all from [Key_2012], are taken from the software distributed with
[Key_2012] and available at software.seg.org/2012/0003. These filters are distributed under the SEG license.

2.4. filters – Digital Filters for FHT 21

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://software.seg.org/2012/0003

empymod Documentation, Release 1.1.0

class empymod.filters.DigitalFilter(name)
Simple Class for Digital Filters.

empymod.filters.anderson_801_1982()
Anderson 801: [Anderson_1982].

Anderson 801 pt filter, as published in [Anderson_1982]; taken from file wa801Hankel.txt from
[Key_2012], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License:
http://software.seg.org/disclaimer.txt.

empymod.filters.key_101_2009()
Key 101 2009: [Key_2009].

Key 101 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.key_101_2012()
Key 101 2012: [Key_2012].

Key 101 pt filter, taken from file kk101Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_101_CosSin_2012()
Key 101 CosSin 2012: [Key_2012].

Key 101 pt filter, taken from file kk101CosSin.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_2009()
Key 201 2009: [Key_2009].

Key 201 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.key_201_2012()
Key 201 2012: [Key_2012].

Key 201 pt filter, taken from file kk201Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_CosSin_2012()
Key 201 CosSin 2012: [Key_2012].

Key 201 pt filter, taken from file kk201CosSin.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_241_CosSin_2009()
Key 241 CosSin 2009: [Key_2009].

Key 241 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.key_401_2009()
Key 401 2009: [Key_2009].

Key 401 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

22 Chapter 2. Code

http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.1.0

empymod.filters.key_51_2012()
Key 51 2012: [Key_2012].

Key 51 pt filter, taken from file kk51Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_601_CosSin_2009()
Key 601 CosSin 2009: [Key_2009].

Key 601 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.key_81_CosSin_2009()
Key 81 CosSin 2009: [Key_2009].

Key 81 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.kong_241_2007()
Kong 241: [Kong_2007].

Kong 241 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

empymod.filters.kong_61_2007()
Kong 61: [Kong_2007].

Kong 61 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009],
available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0,
http://www.apache.org/licenses/LICENSE-2.0.

2.5 utils – Utilites

This module consists of four groups of functions:

0. General Settings

1. Class EMArray

2. Input parameter checks for modelling

3. General utilities

Group 0 is to set minimum offset, frequency and time for calculation (in order to avoid divisions by zero). Group 2 are
checks organised in modules. So if you create for instance a modelling-routine in which you loop over frequencies,
you have to call check_ab, check_model, get_coords, check_depth and check_hankel only once, but check_frequency
in each loop. You do not have to run these checks if you are sure your input parameters are in the correct format.

class empymod.utils.EMArray
Subclassing an ndarray: add Amplitude <amp> and Phase <pha>.

Parameters realpart : array

1. Real part of input, if input is real or complex.

2. Imaginary part of input, if input is pure imaginary.

3. Complex input.

In cases 2 and 3, imagpart must be None.

2.5. utils – Utilites 23

http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.1.0

imagpart: array, optional

Imaginary part of input. Defaults to None.

Examples

>>> import numpy as np
>>> from empymod.utils import EMArray
>>> emvalues = EMArray(np.array([1,2,3]), np.array([1, 0, -1]))
>>> print('Amplitude : ', emvalues.amp)
Amplitude : [1.41421356 2. 3.16227766]
>>> print('Phase : ', emvalues.pha)
Phase : [45. 0. -18.43494882]

Attributes

amp (ndarray) Amplitude of the input data.
pha (ndarray) Phase of the input data, in degrees, lag-defined (increasing with increasing offset.) To get

lead-defined phases, multiply imagpart by -1 before passing through this function.

empymod.utils.check_ab(ab, verb)
Check source-receiver configuration.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters ab : int

Source-receiver configuration.

verb : {0, 1, 2}

Level of verbosity.
Returns ab_calc : int

Adjusted source-receiver configuration using reciprocity.

msrc : bool

If True, src is magnetic; if False, src is electric.

mrec : bool

If True, rec is magnetic; if False, rec is electric.

empymod.utils.get_abs_srcbipole(msrc, recdir, theta, phi, verb)
Check source-receiver configuration.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters msrc : bool

True if src is magnetic, else False.

recdir : {1, 2, 3, 4, 5, 6}

Receiver direction.

theta : float

Horizontal source angle.

24 Chapter 2. Code

empymod Documentation, Release 1.1.0

phi : float

Vertical source angle.

verb : {0, 1, 2}

Level of verbosity.
Returns ab : array of int

ab’s to calculate for this bipole.

mrec : bool

Deduced from recdir. Receiver is magnetic if True.

fact : array

Geometrical spreading factors for ab’s.

empymod.utils.check_model(depth, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Check the model: depth and corresponding layer parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH : array_like

Horizontal electric permittivities epsilon_h (-); #epermH = #res.

epermV : array_like

Vertical electric permittivities epsilon_v (-); #epermV = #res.

mpermH : array_like

Horizontal magnetic permeabilities mu_h (-); #mpermH = #res.

mpermV : array_like

Vertical magnetic permeabilities mu_v (-); #mpermV = #res.

verb : {0, 1, 2}

Level of verbosity.
Returns depth : array

Depths of layer interfaces, adds -infty at beginning if not present.

res : array

As input, checked for size.

aniso : array

As input, checked for size. If None, defaults to an array of ones.

epermH : array

As input, checked for size. If None, defaults to an array of ones.

2.5. utils – Utilites 25

empymod Documentation, Release 1.1.0

epermV : array

As input, checked for size. If None, defaults to an array of ones.

mpermH : array

As input, checked for size. If None, defaults to an array of ones.

mpermV : array

As input, checked for size. If None, defaults to an array of ones.

isfullspace : bool

If True, the model is a fullspace (res, aniso, epermH, epermV, mpermM, and
mpermV are in all layers the same).

empymod.utils.check_pole(inp, name, verb, intpts=-1)
Check dipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Pole coordinates (m): [pole-x, pole-y, pole-z].

name : str, {‘src’, ‘rec’}

Pole-type.

verb : {0, 1, 2}

Level of verbosity.

intpts : int

Number of integration points for bipole.
Returns out : list

List of pole coordinates [x, y, z].

outbp : {tuple, None}

• If pole is a dipole, None.

• If pole is a bipole, (theta, phi, g_w):

– theta : Horizontal pole angle.

– phi : Vertical pole angle.

– g_w : Integration weights.

empymod.utils.get_coords(src, rec, verb, intpts=(-1, -1))
Get depths, offsets, angles, hence spatial input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters src : list of floats or arrays

Source coordinates (m):

• dipole: [src-x, src-y, src-z]

• bipole: [src-x0, src-x1, src-y0, src-y1, src-z0, src-z1]

rec : list of floats or arrays

Receiver coordinates (m):

26 Chapter 2. Code

empymod Documentation, Release 1.1.0

• dipole: [src-x, src-y, src-z]

• bipole: [src-x0, src-x1, src-y0, src-y1, src-z0, src-z1]

verb : {0, 1, 2}

Level of verbosity.

intpts : tuple (int, int)

Number of integration points for bipole for (src, rec).

• nr < 0 : dipole

• 0 <= nr < 3 : bipole, but calculated as dipole at centerpoint

• nr >= 3 : bipole
Returns zsrc : array of float

Depth(s) of src (plural only if bipole).

zrec : array of float

Depth(s) of rec (plural only if bipole).

off : array of floats

Offsets

angle : array of floats

Angles

nsrc: int

Number of bipole sources

nrec: int

Number of receivers

srcrecbp: tuple

(srcbp, recbp) If src/rec is dipole: None If src/rec is bipole: tuple containing
(theta, phi, g_w)

empymod.utils.check_depth(zsrc, zrec, depth)
Check layer in which source/receiver reside.
Note: If zsrc or zrec are on a layer interface, the layer above the interface is chosen.
This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters zsrc : array of float

Depth(s) of src (plural only if bipole).

zrec : array of float

Depth(s) of rec (plural only if bipole).

depth : array

Depths of layer interfaces.
Returns lsrc : int or array_like of int

Layer number(s) in which src resides (plural only if bipole).

lrec : int or array_like of int

Layer number(s) in which rec resides (plural only if bipole).

2.5. utils – Utilites 27

empymod Documentation, Release 1.1.0

empymod.utils.check_hankel(ht, htarg, verb)
Check Hankel transform parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters ht : {‘fht’, ‘qwe’}

Flag to choose the Hankel transform.

htarg : str or filter from empymod.filters or array_like,

Depends on the value for ht.

verb : {0, 1, 2}

Level of verbosity.
Returns ht, htarg

Checked if valid and set to defaults if not provided.

empymod.utils.check_frequency(freq, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Calculate frequency-dependent parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters freq : array_like

Frequencies f (Hz).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH : array_like

Horizontal electric permittivities epsilon_h (-); #epermH = #res.

epermV : array_like

Vertical electric permittivities epsilon_v (-); #epermV = #res.

mpermH : array_like

Horizontal magnetic permeabilities mu_h (-); #mpermH = #res.

mpermV : array_like

Vertical magnetic permeabilities mu_v (-); #mpermV = #res.

verb : {0, 1, 2}

Level of verbosity.
Returns freq : float

Frequency, checked for size and assured min_freq.

etaH : array

Parameters etaH, same size as provided resistivity.

etaV : array

Parameters etaV, same size as provided resistivity.

zetaH : array

28 Chapter 2. Code

empymod Documentation, Release 1.1.0

Parameters zetaH, same size as provided resistivity.

zetaV : array

Parameters zetaV, same size as provided resistivity.

empymod.utils.check_opt(opt, loop, ht, htarg, verb)
Check optimization parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters opt : {None, ‘parallel’, ‘spline’}

Optimization flag.

loop : {None, ‘freq’, ‘off’}

Loop flag.

ht : str

Flag to choose the Hankel transform.

htarg : array_like,

Depends on the value for ht.

verb : {0, 1, 2}

Level of verbosity.
Returns use_spline : bool

Boolean if to use spline interpolation.

use_ne_eval : bool

Boolean if to use numexpr.

loop_freq : bool

Boolean if to loop over frequencies.

loop_off : bool

Boolean if to loop over offsets.

empymod.utils.check_time(freqtime, signal, ft, ftarg, verb)
Check time domain specific input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s).

signal : {None, 0, 1, -1}

Source signal:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’}

2.5. utils – Utilites 29

empymod Documentation, Release 1.1.0

Flag for Fourier transform, only used if signal != None.

ftarg : str or filter from empymod.filters or array_like,

Only used if signal !=None. Depends on the value for ft:

verb : {0, 1, 2}

Level of verbosity.
Returns time : float

Time, checked for size and assured min_time.

freq : float

Frequencies required for given times and ft-settings.

ft, ftarg

Checked if valid and set to defaults if not provided, checked with signal.

empymod.utils.printstartfinish(verb, inp=None)
Print start and finish with time measure.

30 Chapter 2. Code

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

31

empymod Documentation, Release 1.1.0

32 Chapter 3. Indices and tables

Bibliography

[Anderson_1975] Anderson, W.L., 1975, Improved digital filters for evaluating Fourier and Hankel transform inte-
grals: USGS Unnumbered Series; http://pubs.usgs.gov/unnumbered/70045426/report.pdf.

[Anderson_1979] Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by
adaptive digital filtering: Geophysics, 44, 1287–1305; DOI: 10.1190/1.1441007.

[Anderson_1982] Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM Trans.
on Math. Softw. (TOMS), 8, 344–368; DOI: 10.1145/356012.356014.

[Gosh_1971] Ghosh, D. P., 1971, The application of linear filter theory to the direct interpretation of geo-
electrical resistivity sounding measurements: Geophysical Prospecting, 19, 192–217; DOI: 10.1111/j.1365-
2478.1971.tb00593.x.

[Hamilton_2000] Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly Notices
of the Royal Astronomical Society, 312, pages 257-284; DOI: 10.1046/j.1365-8711.2000.03071.x; Website of
FFTLog: casa.colorado.edu/~ajsh/FFTLog.

[Hunziker_et_al_2015] Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered verti-
cal transverse isotropic medium: A new look at an old problem: Geophysics, 80, F1–F18; DOI: 10.1190/geo2013-
0411.1; Software: software.seg.org/2015/0001.

[Key_2009] Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and
synthetic studies for resolving thin resistive layers: Geophysics, 74, F9–F20; DOI: 10.1190/1.3058434. Software:
marineemlab.ucsd.edu/Projects/Occam/1DCSEM.

[Key_2012] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21–F30;
DOI: 10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003.

[Kong_2007] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geo-
physical Prospecting, 55, 83–89; DOI: 10.1111/j.1365-2478.2006.00585.x.

[Shanks_1955] Shanks, D., 1955, Non-linear transformations of divergent and slowly convergent sequences: Journal
of Mathematics and Physics, 34, 1–42; DOI: 10.1002/sapm19553411.

[Slob_et_al_2010] Slob, E., J. Hunziker, and W. A. Mulder, 2010, Green’s tensors for the diffusive electric field in a
VTI half-space: PIER, 107, 1–20: DOI: 10.2528/PIER10052807.

[Talman_1978] Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal of
Computational Physics, 29, pages 35-48; DOI: 10.1016/0021-9991(78)90107-9.

[Trefethen_2000] Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for Industrial and Ap-
plied Mathematics (SIAM), volume 10 of Software, Environments, and Tools, chapter 12, page 129;
DOI: 10.1137/1.9780898719598.ch12.

33

http://pubs.usgs.gov/unnumbered/70045426/report.pdf
http://dx.doi.org/10.1190/1.1441007
http://dx.doi.org/10.1145/356012.356014
http://dx.doi.org/10.1111/j.1365-2478.1971.tb00593.x
http://dx.doi.org/10.1111/j.1365-2478.1971.tb00593.x
http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x
http://casa.colorado.edu/~ajsh/FFTLog
http://dx.doi.org/10.1190/geo2013-0411.1
http://dx.doi.org/10.1190/geo2013-0411.1
http://software.seg.org/2015/0001
http://dx.doi.org/10.1190/1.3058434
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://dx.doi.org/10.1190/GEO2011-0237.1
http://software.seg.org/2012/0003
http://dx.doi.org/10.1111/j.1365-2478.2006.00585.x
http://dx.doi.org/10.1002/sapm19553411
http://dx.doi.org/10.2528/PIER10052807
http://dx.doi.org/10.1016/0021-9991(78)90107-9
http://dx.doi.org/10.1137/1.9780898719598.ch12

empymod Documentation, Release 1.1.0

[Weniger_1989] Weniger, E. J., 1989, Nonlinear sequence transformations for the acceleration of convergence and
the summation of divergent series: Computer Physics Reports, 10, 189–371; arXiv: abs/math/0306302.

[Wynn_1956] Wynn, P., 1956, On a device for computing the 𝑒𝑚(𝑆𝑛) tranformation: Math. Comput., 10, 91–96;
DOI: 10.1090/S0025-5718-1956-0084056-6.

34 Bibliography

https://arxiv.org/abs/math/0306302
http://dx.doi.org/10.1090/S0025-5718-1956-0084056-6

Python Module Index

e
empymod, 3
empymod.filters, 21
empymod.kernel, 16
empymod.model, 7
empymod.transform, 19
empymod.utils, 23

35

empymod Documentation, Release 1.1.0

36 Python Module Index

Index

A
anderson_801_1982() (in module empymod.filters), 22
angle_factor() (in module empymod.kernel), 17

C
check_ab() (in module empymod.utils), 24
check_depth() (in module empymod.utils), 27
check_frequency() (in module empymod.utils), 28
check_hankel() (in module empymod.utils), 27
check_model() (in module empymod.utils), 25
check_opt() (in module empymod.utils), 29
check_pole() (in module empymod.utils), 26
check_time() (in module empymod.utils), 29

D
DigitalFilter (class in empymod.filters), 21
dipole() (in module empymod.model), 8

E
EMArray (class in empymod.utils), 23
empymod (module), 3
empymod.filters (module), 21
empymod.kernel (module), 16
empymod.model (module), 7
empymod.transform (module), 19
empymod.utils (module), 23

F
fem() (in module empymod.model), 16
fft() (in module empymod.transform), 20
fftlog() (in module empymod.transform), 20
fht() (in module empymod.transform), 19
fhti() (in module empymod.transform), 21
fields() (in module empymod.kernel), 18
fqwe() (in module empymod.transform), 20
frequency() (in module empymod.model), 15
fullspace() (in module empymod.kernel), 17

G
get_abs_srcbipole() (in module empymod.utils), 24

get_coords() (in module empymod.utils), 26
get_spline_values() (in module empymod.transform), 21
gpr() (in module empymod.model), 15
greenfct() (in module empymod.kernel), 18

H
halfspace() (in module empymod.kernel), 18
hqwe() (in module empymod.transform), 20

K
key_101_2009() (in module empymod.filters), 22
key_101_2012() (in module empymod.filters), 22
key_101_CosSin_2012() (in module empymod.filters), 22
key_201_2009() (in module empymod.filters), 22
key_201_2012() (in module empymod.filters), 22
key_201_CosSin_2012() (in module empymod.filters), 22
key_241_CosSin_2009() (in module empymod.filters), 22
key_401_2009() (in module empymod.filters), 22
key_51_2012() (in module empymod.filters), 22
key_601_CosSin_2009() (in module empymod.filters), 23
key_81_CosSin_2009() (in module empymod.filters), 23
kong_241_2007() (in module empymod.filters), 23
kong_61_2007() (in module empymod.filters), 23

P
printstartfinish() (in module empymod.utils), 30

Q
qwe() (in module empymod.transform), 21

R
reflections() (in module empymod.kernel), 18

S
srcbipole() (in module empymod.model), 11

T
tem() (in module empymod.model), 16
time() (in module empymod.model), 15

37

empymod Documentation, Release 1.1.0

W
wavenumber() (in module empymod.kernel), 17
wavenumber() (in module empymod.model), 16

38 Index

	Info
	Installation & requirements
	Citation
	License
	Missing features
	Notice
	Note on speed, memory, and accuracy
	FFTLog
	References

	Code
	model – Model EM-responses
	kernel – Kernel calculation
	transform – Hankel and Fourier Transforms
	filters – Digital Filters for FHT
	utils – Utilites

	Indices and tables
	Bibliography
	Python Module Index

